
Oktopus: Service Chaining for Multicast Traffic
Khaled Diab, Carlos Lee, and Mohamed Hefeeda

School of Computing Science, Simon Fraser University, Canada

Abstract—Multicast service chaining refers to the orchestration
of network services for multicast traffic. Paths of a multicast
session that span the source, destinations and required services
form a complex structure that we refer to as the multicast
distribution graph. In this paper, we propose a new path-based
algorithm, called Oktopus, that runs at the control plane of the
ISP network to calculate the multicast distribution graph for
a given session. Oktopus aims at minimizing the routing cost
for each multicast session while satisfying all service chaining
requirements. Oktopus consists of two steps. The first one
generates a set of segments from the given ISP network topology,
and the second step uses these segments to efficiently calculate the
multicast distribution graph. Oktopus has a fine-grained control
over the selection of links in the distribution graphs that leads
to significant improvements. Specifically, Oktopus increases the
number of allocated sessions because it can reach ISP locations
that have the required services, and thus includes them in the
calculated graph. Moreover, Oktopus can reduce the routing cost
per session as it carefully chooses links belonging to the graph.
We compared Oktopus against the optimal and closest algorithms
using real ISP topologies. Our results show that Oktopus has an
optimality gap of 5% on average, and it computes the distribution
graphs multiple orders of magnitude faster than the optimal
algorithm. Moreover, Oktopus outperforms the closest algorithm
in the literature in terms of the number of allocated multicast
sessions by up to 37%.

I. INTRODUCTION

Recently, network operators have started to adopt Network
Function Virtualization (NFV) [1], [2] to reduce the cost of
purchasing and managing middleboxes such as firewalls and
intrusion detection systems (IDSes). In NFV, the functionality
of a hardware-based middlebox is implemented as a virtual
network function (VNF). This has led the research community
to explore various aspects such as implementing VNFs effi-
ciently and securely [3], [4], [5], [6], [7], [8], building network
stacks for them [9], [10], managing their state [11], [12], and
deploying them [13], [14], [15]. For brevity, we refer to a VNF
as a service.

ISP networks have observed various changes in terms of
their architectures and the complexity of Internet applications
they carry. Specifically, large ISPs tend to deploy various
services at different locations in their networks to support their
customers’ needs. Moreover, many recent Internet applications
allow their users to produce and consume content anytime at
high rates. Examples of such applications include live Internet
broadcast, e.g., Facebook Live [16], IPTV [17], webinars and
video conferencing [18] and massive multiplayer games [19].
For instance, Facebook Live aims to stream millions of live
sessions to millions of concurrent users [16], [20]. Multicast
can be used to efficiently support these applications. Many

large ISPs use multicast to efficiently carry traffic through their
networks. For example, AT&T has deployed UVerse and BT
has deployed YouView, where both use multicast.

As these Internet applications become complex, providers of
these applications require their multicast traffic to pass through
ordered sequences of network services. For example, traffic of
a live video stream may be required to pass through a firewall,
IDS and video transcoder. The orchestration of ordered ser-
vices in a multicast session is referred to as multicast service
chaining. A crucial requirement for service chaining is that
packets of a session need to be processed by the required
sequence of services before reaching their destinations. Since
services are typically deployed at different ISP locations,
packets of a multicast session may need to visit a node or
link multiple times. Therefore, the paths of a multicast session
that requires service chaining may not necessarily form a tree.
Instead, paths that span the source, destinations and required
services form a more complex structure that we refer to as a
multicast distribution graph. To realize service chaining, the
ISP needs to efficiently calculate multicast distribution graphs
for multicast sessions.

Calculating multicast distribution graphs that fulfill service
chaining is, however, a challenging task. First, the ISP needs
to jointly allocate resources at the network layer (i.e., link
capacities) and system layer (i.e., processing capacities of net-
work services), while minimizing the routing cost per session.
Second, the ISP should maximize the number of allocated
multicast sessions in order to maximize the utilization of the
available network resources. This can be a hard task to achieve
especially when the number of sessions increases. Third, since
an ISP does not necessarily deploy all service instances at all
of its locations, the calculated graphs may include loops in
the network. Forwarding loops may waste significant network
resources especially for bandwidth-demanding applications
such as live video streaming. In addition, they may introduce
forwarding ambiguity at routers. Finally, the search space
of multicast service chaining is much larger than its unicast
counterpart. As a result, exhaustive search algorithms may not
calculate the distribution graphs in a reasonable time.

In this paper, we address the complex problem of multicast
service chaining for large-scale ISPs. We propose a new
algorithm, called Oktopus, that runs at the control plane of
the ISP network to calculate a multicast distribution graph
for every multicast session. Oktopus has two goals when
it calculates distribution graphs: (i) maximizing the number
of allocated multicast sessions in the ISP network, and (ii)
minimizing the average routing cost per session. Oktopus
is efficient as it achieves these goals without exceeding the978-1-7281-6992-7/20/$31.00 ©2020 IEEE

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

ISP network and processing resources, and it does not create
forwarding loops in the ISP network. Oktopus is also general
as it does not make assumptions on the ISP topology or where
the services are deployed.

The key idea of Oktopus is the design of a new path-
based approach to calculate the multicast distribution graph.
Specifically, for a given multicast session, Oktopus calculates
a set of valid network paths that satisfy the service chaining
requirements from the source to each destination. Then, it
combines the calculated paths to all destinations to form the
final distribution graph. We introduce multiple new ideas in the
design of Oktopus to address the complexity of the multicast
service chaining problem and its huge search space, such as
efficient offline and on-demand path generation, path weight
calculation and lightweight tracking of path direction.

We evaluate and compare Oktopus against the optimal solu-
tion and the closest algorithm in the literature [21] using real
ISP topologies with different sizes. Compared to the optimal
solution, Oktopus produces multicast distribution graphs with
a routing cost of about 5% more than the ones produced by the
optimal algorithm, while it computes the distribution graphs
multiple orders of magnitude faster than the optimal algorithm.
Moreover, when increasing the number of multicast sessions,
the optimal algorithm fails to calculate a solution within 24
hours for large ISP topologies, while Oktopus calculates the
distribution graph of each multicast session in a few seconds.
Furthermore, our results show that Oktopus outperforms the
closest algorithm in the literature in terms of the number of
allocated multicast sessions by up to 37%, and it efficiently
uses the available ISP resources to minimize the routing cost.

II. RELATED WORK

Prior works, e.g., [22], [23], [24], addressed the unicast
service chaining problem. For example, Sallam et al. [22]
proposed to transform the ISP network to another graph and
then find a service-chained path using Dijkstra’s algorithm.
These methods are not applicable to multicast because they
may introduce loops and/or allocate more resources as they
do not consider the multicast branching nature.

Recent works, e.g., [25], [26], [21], addressed the problem
of service chaining for multicast traffic. Xu et al. [25] proposed
an algorithm to search for the best Steiner tree that contains
the required number of services. This work assumed services
are deployed at all ISP locations, which is not practical in
many scenarios. Kuo et al. [26] addressed the multicast service
chaining problem in cloud environments by building network
overlays, while Oktopus focuses on multicast service chaining
at the network level (i.e., handling link and forwarding table
capacities). Ren et al. [21] proposed an algorithm, called MSA,
to solve the multicast service chaining problem. This algorithm
builds an adjacency graph where each node represents a
service and each edge represents the shortest path between
the service nodes. MSA then finds a path from the source to
the last service function from the adjacency graph. Finally,
it calculates a Steiner tree that connects the last service
nodes to the destinations. MSA, however, assumes infinite link

capacities, and thus it may only work in certain situations
where the number of multicast sessions is small. However, as
the number of sessions increases, MSA may not be able to
allocate many sessions, or it could congest the network. In
contrast to MSA, Oktopus is general as it calculates multicast
distribution graphs for large numbers of sessions without
assuming infinite link capacities, which is the practical case.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

Multicast can be used in various scenarios. A common use-
case is when a major ISP, e.g., AT&T, manages multicast
sessions for its own clients. Clients in this case can be end
users in applications such as IPTV and live streaming. Clients
could also be caches for content providers such as Netflix,
where the contents of such caches are periodically updated
using multicast.

We consider a multi-region ISP network that has data and
control planes. The data plane is composed of core routers
deployed in multiple geographical regions. The control plane
(referred to as the controller) learns the ISP network topology.
This is simple to achieve using common intra-domain routing
and monitoring protocols. The controller sends match-action
rules (e.g., using the OpenFlow protocol [27]) to core routers
to inform them how to forward packets of multicast sessions.

The ISP network is modeled as a graph (N, E), where N
represents ISP locations and E represents links between the
locations. Each link l ∈ E has a capacity of cl bits/sec. The
ISP sets a cost γl of forwarding a unit of traffic on link l. An
ISP location refers to a physical entity that contains routers
and servers, e.g., a point of presence (PoP). We refer to ISP
locations as nodes for simplicity. Each node n ∈ N contains
a core router to forward traffic to/from other nodes. That core
router has a forwarding table of size fn entries, which is
used to maintain match-action rules sent by the controller to
forward multicast packets. In addition, node n has servers that
host a set of virtualized services. The ISP allocates computing
resources to process pv,n bits/sec for each service v deployed
at node n. The deployment and allocation of services are
beyond the scope of this work.

A multicast session s is defined by the tuple 〈src, dsts,V〉,
where src and dsts are its source and destinations, and V is the
sequence of required services. The session has a bandwidth of
b bits/sec. Packets of s need to be processed by the sequence
of required services V before reaching its destinations.

The ISP controller uses Oktopus to calculate for the multi-
cast session s a distribution graph D, which is defined by paths
spanning src and dsts while satisfying the required sequence
of services V. The controller then maps the graph to match-
action rules and sends these rules to corresponding routers.

Figure 1 shows an example of a network that provides
two services. Service 1 is deployed at nodes b and d, while
service 2 is deployed at node e. Each link has a capacity of 2
bandwidth units, and each service has a capacity of 1 process-
ing unit. There are two concurrent multicast sessions defined
by 〈a, {f, g, h, i}, {1 → 2}〉 and 〈a, {g, i}, {1}〉, each has 1

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

1

2

a
g

i

b

e

f

h
c

d

1

Session 1
Session 2

Fig. 1: Illustrative example showing two multicast sessions
with service chaining.

bandwidth unit. Solid and dotted arrows represent the multicast
distribution graphs calculated by the proposed algorithm for
the two multicast sessions. Notice that the algorithm does not
exceed the processing capacity of services, and it balances the
load across the links.

Each graph node n belonging to D represents a core router
and a set of services if this ISP location processes packets of
s. Moreover, packets of a multicast session maintain in their
headers what services these packets have passed through so
far. These headers are updated by every service that processes
the packets. We define the packet class as the set of written
services in its headers. Specifically, the classes of incoming
or outgoing packets on interface i at node n of session s are
referred to as inc(i, n, s) or out(i, n, s), respectively.

Edges of D, denoted by L, are calculated to satisfy the
service chaining requirements, and thus, they may not follow
shortest paths computed by intra-domain routing protocols. We
define the routing cost of forwarding packets of a multicast
session s on links of D as b×

∑
l∈L γl.

B. Problem Definition and Hardness

The problem addressed in this paper is to calculate a
multicast distribution graph D for an input multicast session s
with required services V by allocating the processing resources
(at the system-level) of the services deployed at various ISP
locations to the session as well as engineering edges of the
distribution graph (at the network-level) to pass through the
required services while minimizing the routing cost of the
session without exceeding the available processing resources
at nodes, link capacities, and forwarding table sizes at core
routers.

Theorem 1. Determining the multicast distribution graph D
that minimizes the routing cost of a multicast session with a
given sequence of services V is NP-hard.

Proof Sketch: We prove the theorem by showing a
polynomial-time reduction from the NP-hard Steiner tree prob-
lem to a special instance of our problem, which happens when
the network resources are infinite and the multicast session
does not require any services.

We shed some lights on the difficulty of solving the
multicast service chaining problem, beyond being NP-hard.

Previous works, e.g., [28], showed that finding a unicast path
that satisfies service chaining requirements is computationally
intractable even when the available processing resources are
infinite. This is because the search space of this family of
problems is prohibitively large. For the multicast case, the
search space is even larger as a multicast distribution graph
needs to be composed of multiple unicast paths to reach all
destinations of the session. Even without service chaining,
the multicast traffic engineering problem is very challenging
to solve with any analytical bounds on the performance. For
example, Huang et al. [29] showed that solving the multicast
traffic engineering problem without service chaining cannot be
approximated within any ratio.

In summary, because of its huge search space, the multicast
service chaining problem considered in this paper cannot be
solved optimally for practical topology sizes, nor can it be
solved with any constant-factor approximation algorithms as
shown in previous works for even simpler instances of it.
Yet, it is a practical and important problem. In this paper,
we propose a principled, heuristic, approach to efficiently
find near-optimal solutions for the multicast service chaining
problem.

IV. PROPOSED SOLUTION

To aid the reader in understanding our solution, we struc-
ture this section as follows. We start by defining the basic
terms used in the solution and summarizing the basic design
principles employed to develop it. Then, we present a high-
level overview showing how the solution works and its main
components. This is followed by a detailed description of each
component. Then, we analyze the time and space complexities
of our solution and describe how it can be deployed in practical
settings. Finally, we present a complete example showing all
steps of our solution on a small topology.

A. Definitions and Design Principles

Definitions. We define two terms that we use extensively when
describing our algorithm: segment and service-chained path.
A path segment from a node n to a node m is a sequence of
nodes from n to m without a loop. That is, no node appears
more than once in a segment. For example, the sequence of
nodes {a, b, d, g} in Figure 1 forms a segment from a to g.
However, the node sequence {a, b, c, a, b, d, f} is not a valid
segment from a to f as it contains the loop {a, b, c, a}. A
segment may not fulfill service chaining requirements. Note
that our use of the term “segment” is different from the use of
the same term in the recent Segment Routing (SR) initiative
[30]; while a segment in both SR and Oktopus refers to
a section of consecutive links between two endpoints, SR
requires a segment to be the shortest path between these
endpoints whereas Oktopus does not impose this requirement.

A service-chained path is a sequence of pairs of nodes
and services that satisfies the service chaining requirements
in V either partially or fully. For brevity, we refer to such
a sequence as a path. For example, the sequence of nodes
{〈a, φ〉, 〈b, φ〉, 〈d, {1}〉 〈e, {2}〉, 〈d, φ〉, 〈f, φ〉} forms a valid

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

path to reach f and satisfies services {1, 2}, where φ means
this node does not provide any services to the session.
Design Principles. We summarize below the main principles
and intuitions that we used to develop an efficient solution for
the quite-challenging multicast service chaining problem.
• Reducing the search space. As described in §III-B, the

multicast service chaining problem has a prohibitively-
large search space. To address this, we conceptually
divide the solution into two phases. The first phase
computes intermediary data that depends only on the
underlying ISP topology without considering the network
services and their dynamic capacities. This intermediary
data is a subset of possible segments that is carefully
chosen to cover different parts of the network. We pre-
compute this data offline to save time, since it does not
depend on the requirements of multicast sessions which
are known only when the sessions arrive. The second
phase utilizes the precomputed segments and considers
the services needed by individual multicast sessions. In
case that the initial path segments were not sufficient
to find a solution for a given multicast session, we
incrementally add more segments on-demand in real time.

• Recursive composition of network services. For a given
session and a node pair, the precomputed data may
not necessarily contain segments that satisfy the service
chaining requirements between that node pair. To address
this, we expand the search space on demand, by dividing
each segment into smaller ones, and recursively compos-
ing paths that satisfy the service chaining requirements
from shorter segments.

• Balancing the link load. In practice, network operators
prefer balancing the load across different links to avoid
congestion. To consider this, we design link and service
weights to direct our algorithm to chose paths in a way
that leads to balancing the load across links and services.

B. High-level Overview

Oktopus runs at the ISP controller to calculate the multicast
distribution graph. It takes as input the ISP network topology
(N,E) and the parameters of the multicast session s, which
are its source src, destinations dst, required services V, and
bandwidth b. The algorithm then produces the distribution
graph D that satisfies the service chaining requirements. The
proposed algorithm is path-based. That is, the key insight is
that links of the calculated graph are the union of unicast paths
from the source to all destinations. To efficiently realize this
path-based approach, Oktopus runs two steps to calculate the
distribution graph: segment generation and graph calculation.
The first step generates a set of network segments for the ISP
network, and the second step uses the segments to calculate
the multicast distribution graph.

The GENERATESEGMENTS function, described in §IV-C,
builds the set of network segments, and it stores them in
what we call segment store. Segment generation happens
offline (i.e., before the graph calculation starts) as well as on-
demand (i.e., during the graph calculation). As the number

of potential segments grows exponentially with the network
size, the main challenge of building such a segment store
is the balance between the space overhead and diversity of
generated segments. We address this challenge by utilizing
some practical traffic engineering observations to reduce the
number of generated segments in the initial segment store,
while progressively generating new segments as needed.

Next, for a given multicast session, the CALCULATEGRAPH
function computes its distribution graph as detailed in §IV-D.
Specifically, for every destination in the multicast session,
CALCULATEGRAPH examines segments in the segment store
which can reach that destination, creates service-chained paths,
calculates a weight value for each path, and picks the paths
that satisfy the multicast service chaining objectives. Then, the
algorithm merges these paths to build the final graph. However,
simple path merging may result in forwarding ambiguity
at routers. This ambiguity happens when a router receives
packets of a multicast session on the same interface but it
should forward them on different interfaces based on the
services that each packet has gone through already. Thus,
the proposed algorithm should produce graphs that satisfy
the service chaining requirements while not resulting in for-
warding ambiguity at routers. To calculate an efficient graph
without forwarding ambiguity, we propose a lightweight data
structure to maintain and track information about each path in
the calculated graph.

C. Generating Segments

The GENERATESEGMENTS algorithm computes segments
between each pair of nodes in the ISP network. The algorithm
takes as inputs the ISP network topology (N,E) and the maxi-
mum number of segments to generate between every node pair
K. In addition, we employ another parameter, which we call
ρ, that is defined as the ratio between the maximum segment
length and network diameter. This parameter is typically in the
range of 1–2 and it controls the latency of generated segments.
The algorithm then returns the segment store (denoted by S)
that maintains the generated segments. The segment store is a
key-value data structure, where the key is a node pair (n,m),
and the value is the list of generated segments between n and
m. The segment store provides fast access to valid network
segments, which is needed by the next step in the algorithm.

The pseudo code of the GENERATESEGMENTS algorithm is
omitted due to space limitations. At high-level, the algorithm
has two nested loops indexed by n and m, each iterates over
the ISP nodes N. It creates a new entry S[n,m] if such entry
does not exist. It then generates segments and inserts them into
S[n,m] as follows. For each node pair n and m, it traverses the
ISP network between the node pair using breadth-first search,
and computes the first K loop-free segments whose lengths
do not exceed ρ×D hops, where D is the network diameter.
It then calculates a set of edge-disjoint segments between the
node pairs n and m, and adds them to S[n,m]. It does so by
calculating the maximum flow between the node pair using
existing algorithms (e.g., Edmonds–Karp algorithm [31], [32])
to create the flow and residual networks. Saturated edges in

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

the residual network (i.e., links that can still forward traffic)
correspond to the edge-disjoint segments.

There are three observations behind the design of the
GENERATESEGMENTS algorithm. These observations guide
the generation of segments that balance link usage while
calculating the graph. First, the breadth-first traversal produces
segments with diverse links compared to depth-first traversal.
Second, edge-disjoint segments add more degrees of freedom
to the generated segments as indicated by prior works, e.g.,
[33], [34]. Third, segments that are much longer than the
network diameter would impose significant packet delays, and
they should not be used to calculate the distribution graph.

Finally, we design the GENERATESEGMENTS algorithm to
generate segments without depending on the deployed services
at ISP locations or multicast sessions. Instead, the generated
segments rely only on the ISP network topology. This is
because the ISP network topology does not change frequently,
while the ISP may deploy or remove services at smaller time
scales to adapt to different network loads (i.e., the number
of multicast sessions). This enables Oktopus to maintain and
reuse the segment store across different runs of the algorithm.

D. Calculating the Multicast Distribution Graph

For a given multicast session, the graph calculation algo-
rithm calculates a set of service-chained paths (or paths for
short) and merges them to build the distribution graph. Unlike
segments maintained in the segment store, every path is created
for a specific multicast session, and it maintains information
about the satisfied services by that path. This information is
calculated and used by the graph calculation algorithm.

A path p is a sequence of nodes Np. Each node n ∈ Np

maintains the previous node prev(n), and the used incoming
and outgoing interfaces in, on, respectively. In addition, the
last node in p that provides any service to the multicast session
s is referred to as lp. The path p also has a parent path par(p)
which is used to build the final graph and validate forwarding
decisions. The graph calculation algorithm calculates a weight
value wp for path p, which determines the cost of forwarding
and processing traffic on links and nodes of p, respectively.
The CALCULATEGRAPH Algorithm. The CALCULATE-
GRAPH algorithm, shown in Algorithm 1, takes as inputs the
ISP network topology (N, E), the generated segment store S,
and the multicast session s. The algorithm then calculates and
returns the distribution graph D. The algorithm iterates over
the destinations and invokes the FINDPATHS function for every
destination, which we will describe in details later.

The algorithm initializes a new graph D with a single path.
This first path has only one node, which is the source of
the multicast session. For every destination in the multicast
session, the algorithm calculates a set of minimum-cost paths
that satisfy the service chaining requirements V as follows. To
pick a destination (Lines 3–5), the algorithm builds a weighted
graph (N,E), assigns for each link l ∈ E the cost value γl,
and sorts destinations according to the shortest paths from the
source (i.e., a destination with the shortest path is picked first).

Algorithm 1 Calculate a multicast distribution graph.
Input: N: ISP locations (or nodes)
Input: E: ISP network links
Input: S: Segment store
Input: s: multicast session
Output: D: the calculated distribution graph

1: function CALCULATEGRAPH(N,E,P, s)
2: D = new_graph(s) // Initialize a graph with one path
3: unallocated = {}; dsts = SORTDESTINATIONS(s)
4: while len(dsts) > 0 do
5: Pop a destination dst from dsts
6: paths = null; cost = ∞;
7: // Search from previous solution to dst
8: for p ∈ D.get_paths() do
9: for n ∈ Np do

10: srv = {Vs \ out(on, n, s)}
11: sol =FINDPATHS(N,S, s, p, n, dst, srv)
12: if sol.cost < cost then
13: paths = sol.paths
14: cost = sol.cost
15: // Paths were found to reach dst
16: if paths != null then
17: update_resources(N, E, paths)
18: D.update_graph(paths)
19: else
20: dst.traversal_count += 1
21: Push dst to the end of dsts
22: // Start dynamic segment generation
23: if dst.traversal_count == 2 then
24: Generate new segments and add them to S
25: else if dst.traversal_count > 2 then
26: Pop dst from dsts
27: Push dst to unallocated
28: return D

This sorting ensures that the algorithm does not use long paths
that may lead to higher routing costs.

The algorithm then iterates over all nodes in the calculated
paths so far. Each traversed node represents a candidate
branching in the graph to reach the destination. For every
traversed node n, the algorithm computes the set of remaining
services to be satisfied if the graph would branch at n
(Line 10), and calculates the set of paths by calling the
FINDPATHS function (Line 11), which returns a set of paths
and their costs. The CALCULATEGRAPH algorithm uses the
minimum-cost paths, and updates the available resources and
D. The algorithm also updates the packet classes for every
interface in the nodes belonging to the calculated paths.

The algorithm implements two fall-back strategies to im-
prove its decisions. First, if the algorithm cannot calculate
paths to a destination, it pushes that destination to the end
of destination list to be revisited again (Line 21). This is
because the calculated graph would grow as the algorithm
allocates more paths, and thus, the algorithm would have better

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

search space for that destination. The second strategy is to
dynamically generate new segments and add them to S, which
happens if the algorithm could not calculate paths twice for the
same destination (Lines 22–24). After updating the segment
store, the algorithm traverses the destination again.

The dynamic segment generation updates the segment store
P to reflect the available ISP resources after allocating pre-
ceding multicast sessions. It removes links with full capacity
from the network, and then triggers the GENERATESEGMENTS
algorithm. However, instead of generating segments for all
node pairs in the network, it generates segments for overloaded
node pairs only. An overloaded node pair is a node pair whose
all segments in P have reached full link capacity.
The FINDPATHS Algorithm. The proposed FINDPATHS al-
gorithm, shown in Algorithm 2, computes the service-chained
paths that satisfy the set of services srv of a multicast session
s from a source src to a destination dst. Notice that src and
dst may not be necessarily the source and a destination of
the multicast session. The calculated paths and their costs are
maintained in a solution object referred to as sol.

The main idea of the algorithm is to recursively break down
a segment in S from src to dst into smaller fragments when
srv cannot be satisfied directly using that segment. Each path
is calculated to minimize the routing cost while satisfying srv.
This segment breakdown enables the algorithm to explore a
larger search space when it cannot find an immediate segment
in the segment store. The recursive algorithm has two steps to
realize this idea, which are denoted by A and B in Algorithm 2.

The first step, denoted by A, examines segments from src to
dst in S, calculates candidate paths, and returns the minimum-
cost path. To calculate a path scp from a segment seg in S,
the algorithm first calculates the sequence of services from
srv that can be satisfied using seg (Line 6). The algorithm
maintains the calculated sequence as a map srv_map, where
the key is the node, and the value is the list of services
provided by that node. Given s and srv_map, the algorithm
calculates the path weight w between 0 and 1 (Line 7) as:

W1

∑
l

link_weight(l, s)+W2

∑
v

∑
n

node_weight(v, n, s),

where W1 and W2 are normalization factors, l and n are
links and nodes belonging to the path, and v represents
all services in srv. We calculate the individual link weight
link_weight(l, s) to balance the traffic across network paths,
by considering both the network condition (i.e., link usage) and
network structure (i.e., link importance). Thus, we calculate
the link weight based on its cost γl, usage ul, and importance
factor fl as follows:

link_weight(l, s) =

{
γlα

1+fl
l,s , αl,s > 0.5

γlαl,s, otherwise,
(1)

where αl,s =
(
ul + bs

)
/cl. We calculate the link importance

factor fl as its betweenness score, which is the sum of the
fraction of all-pairs shortest paths that pass through this link.
It assigns higher weights to links that have higher probability

Algorithm 2 Find service-chained paths to a destination.
Input: N: ISP locations (or nodes)
Input: D: Segment store
Input: s: multicast session
Input: p: parent path
Input: src, dst: source and destination
Input: srv: set of ordered services
Output: sol: service-chained paths and their costs

1: function FINDPATHS(N,S, s, p, src, dst, srv)
2: sol = new_solution(); cand_paths = {}
3: A Find a path from src to dst that satisfies srv
4: for seg ∈ S[src, dst] do
5: // Locate services and calculate weights
6: srv_map = SERVICESALONGSEGMENT(s, seg, srv)
7: w = CALCULATEWEIGHTS(sol, s, seg, srv_map)
8: // Build a service-chained path
9: scp = CREATEPATH(s, p, seg, w, srv_map)

10: // Check link capacities and packet classes
11: if not ISVALIDPATH(N, scp) then
12: continue
13: cand_paths.add(scp)
14: Pick the path scp with min. cost and max. # services
15: sol.paths = {scp}; sol.cost = scp.cost
16: if ISCOMPLETEPATH(scp, srv) then
17: return sol
18: B Find paths to satisfy remaining services
19: Adjust scp and its cost
20: sol.paths = {scp}; sol.cost = cost
21: src = lscp; next_cost = ∞; next_src = null
22: v = scp.next_srv // First unsatisfied service
23: nodes = N.get_nodes_by_srv(v)
24: for m ∈ nodes do
25: tmp_sol = FINDPATHS(N,S, s, scp, src,m, {v})
26: if tmp_sol.cost < next_cost then
27: next_src = m; next_sol = tmp_sol
28: next_cost = tmp_sol.cost
29: sol.paths.add(next_sol.paths)
30: sol.cost += next_sol.cost; src = next_src
31: Update p to be the last service-chained path in sol
32: Update srv to be the set of remaining services
33: next_sol = FINDPATHS(N,S, s, p, src, dst, srv)
34: sol.sc_paths.add(next_sol.sc_paths)
35: sol.cost += next_sol.cost
36: return sol

to carry traffic. The link weight in Equation (1) grows ex-
ponentially as the link usage increases and exceeds half of
its capacity. The exponential growth rate is proportional to the
link betweenness score. In other words, a link that is frequently
used and located on a critical path costs more to allocate. We
calculate the node weight node_weight(v, n, s) based on the
bandwidth bs and the total and used processing capacities (in
bits/s) for the service v at n as

(
uv,n + bs

)
/pv,n.

The algorithm then creates a candidate path scp given the

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

calculated satisfied services and path weight (Line 9). The
algorithm sets the scp parent to p and updates the packet
classes for the incoming interface in for every node n ∈ Nscp

as inc(in, n, s) = out(oprev(n), prev(n), s), where prev(n)
is the preceding node to n in Nscp. If n is the first node,
then prev(n) = src. Similarly, the algorithm sets the packet
classes for the outgoing interface on for every node n ∈ Nscp

as out(on, n, s) = inc(in, n, s) ∪ srv_map[n].
The algorithm then validates the calculated paths as follows.

It first checks that all link, processing and forwarding table
capacities are not exceeded. Then, it rejects the path scp if it
would introduce forwarding ambiguity at routers. Forwarding
ambiguity occurs when the same packet class appears more
than once for the same session in any incoming or outgoing
interface in N if scp would be returned. Duplicate packet
classes on an incoming interface means that a router cannot tell
which outgoing interface these packets should be forwarded to,
while duplicate packet classes on an outgoing interface means
that an ISP location produces more traffic than expected.

After validating all paths, the algorithm picks the minimum-
cost path with maximum number of satisfied services. The
algorithm then returns this path if it satisfies all services
srv. Otherwise, the algorithm recursively composes a path
satisfying the required services by breaking down the path to
dst by merging sub-paths that do not belong to S[src, dst] in
the second step of the algorithm, denoted by B, as follows.
The algorithm recursively calls itself to calculate sub-paths
from the last node in scp that provides a service to a node m
that supports the first unsatisfied service as well as sub-paths
from m to dst. This ensures that the algorithm controls each
link in D. First, in Lines 21–29, the algorithm sets src to be
the last node in scp that provides any services (denoted by
lscp), and sets v to the first unsatisfied service in srv by scp.
The algorithm then retrieves all nodes that provide the service
v without exceeding their CPU resources. The algorithm calls
itself with the new source, destination and set of services to
be satisfied, and chooses the minimum-cost paths. Notice that
for each of these recursive calls, the parent path is the sub-
path scp calculated from step A. Second, the algorithm then
finds sub-paths from m to dst (Lines 31–34). This happens
by recursively calling itself as well with different source and
services. The algorithm sets the source to be m, the services
to be the remaining services after finding the node m, and the
parent to be the path calculated by the previous recursive call.

E. Illustrative Example

We describe an illustrative example of the proposed algo-
rithm. Figure 2 depicts an ISP network consisting of 14 nodes.
The capacity of every link in the network is a single unit of
bandwidth, and the cost of forwarding one unit of bandwidth
on every link is 1. The figure shows the services that are
deployed at every node (in squares).

There is a multicast session of a live video to be streamed
from node a to nodes k, l, m and n. Packets of this session
are transmitted at one unit of bandwidth, and they need to be
processed by a chain of the following services: IDS (1) →

5

2

3
4

1

a g
i

b

c

d

e

f

h
j

k

l

m

n6

5
3

6

Fig. 2: Illustrative example of the proposed Oktopus algorithm.

Firewall (2) → Encoder (3) → Content Manager (4) → Ad
Insertion (5) → Transcoder (6). For simplicity, we assign to
each service an ID from 1 to 6.

We first show how the proposed algorithm allocates ISP
resources from the source at node a to one of the destinations
at node n. Notice that there is no single segment, i.e., a
sequence of nodes from a to n, that can satisfy the service
chaining requirements. To address this, Oktopus breaks down
the path to node n into multiple paths, each of which satisfies
a sub-sequence of the required services. This is done by step
B in Algorithm 2. In this example, the proposed algorithm
calculates three paths from node a to node n to satisfy the
service chaining requirements as shown in Figure 2.

The first calculated path is {〈a, {1, 2}〉, 〈e, {3}〉, 〈h, φ〉,
〈j, {4}〉} to satisfy the {1, 2, 3, 4} service requirements
(Line 19 in Algorithm 2). Notice that although service 3 is
deployed at b, our algorithm does not include it in the sub-
path because it results in a larger routing cost.

Next, the algorithm searches from node j for all nodes
that provide service 5, since node j is the last node that
supports the maximum number of required services (Line 21
in Algorithm 2). Since both nodes h and i provide this
service, the algorithm sets the source to j and recursively
calls itself twice, each of which with a different destination
(Lines 24–29 in Algorithm 2). The two recursive calls return
{〈j, φ〉, 〈h, {5}〉} and {〈j, φ〉, 〈g, φ〉, 〈i, {5}〉}, respectively.
Our algorithm chooses the path {〈j, φ〉, 〈h, {5}〉} to satisfy
the service {5} as it results in lower routing cost from j.

The algorithm then calculates a path from node h to node
n while satisfying service {6}. The algorithm sets the source
to h and the destination to n and recursively calls itself
(Line 33 in Algorithm 2). This recursive call returns the path
{〈h, φ〉, 〈g, φ〉, 〈j, {6}〉, 〈n, φ〉} as it has the lowest cost.

Finally, to calculate paths to the remaining destinations, the
algorithm finds a node from which the calculated paths result
in the lowest routing cost. As shown in Figure 2, node j is
used to calculate the paths to destinations m and l, and node
i is used to reach destination k.

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

F. Analysis and Practical Considerations
Time and Space Complexities. The following lemma shows
the worst-case time and space complexities of Oktopus.

Lemma 1. The proposed algorithm terminates in polynomial
time in the order of O(N4E2) per session, where N and E
are the numbers of ISP locations and links, respectively. The
space complexity of the algorithm is O(N3E).

Proof Sketch: The proposed algorithm consists of two
steps: segment generation and graph calculation. The time
complexity of the first step is O(N3E2) as it iterates over
each node pair and runs breadth-first traversal and Edmonds–
Karp algorithms. The time complexity of the second step to
calculate the distribution graph is O(N4E2), which searches
for the best node to connect a new path to and dynamically
generates new segments when needed.

The space complexity of the algorithm is O(N3E) because
it generates K segments for every node pair using breadth-first
traversal and O(E) edge-disjoint segments each of size N .
Practicality. Although the time complexity of the proposed al-
gorithm may appear large, we believe the algorithm is practical
and can run for real ISP topologies for the following reasons.
First, the time complexity analysis is for the worst-case
scenario, which assumes that the dynamic segment generation
and recursive composition of services steps happen for every
destination in the multicast session, which is very unlikely for
most practical situations. If the algorithm does not invoke the
dynamic segment generation, the time complexity reduces to
O(N3), which is further reduced to O(N2) if the recursive
compositioning of services is not invoked. We note that these
two steps are optional in our algorithm and they are invoked
only in case of not finding a solution based on the precomputed
segment store. That is, the network operator may disable either
or both of these steps for fast computations, albeit at the cost of
increasing the possibility of not finding a solution in some rare
cases. Second, the values of N and E are not large for realistic
ISP networks. The number of ISP locations N is in the range
of 10’s–100’s [33], [35], [34], [36], and most ISP networks are
sparse with number of links E ranging from 500 to around
2,000. Our experiments in §V using real ISP topologies show
that the unoptimized, sequential, version of Oktopus takes, on
average, a few seconds to compute the distribution graph for
a given multicast session on a commodity workstation.

Finally, we note that many steps of the proposed algorithm
can run in parallel to reduce the running time. For example,
there are parallel variants of the breadth-first and edge-disjoint
traversal algorithms used by the segment generation algorithm.
Moreover, the body of the first loop in Algorithm 2 can run
in parallel.
Handling Link Failures. Oktopus handles failures as follows.
For a failed link (a, b), the algorithm sets its capacity to zero.
Then, for every distribution graph that includes the failed link,
the algorithm calculates new paths from a to all direct children
of b in the graph. Specifically, for every calculated path p =
{〈i, Si〉, . . . , 〈a, Sa〉, 〈b, Sb〉, 〈j, Sj〉, . . . } that includes (a, b),
we reset this path to {〈i, Si〉, . . . , 〈a, Sa〉}. Then, we re-run

app = App(...)
s = Session(...)
s.traverse(['fw', 'ids'])
r = Routing()
r.addObjective('minRouting')
app.solve()

Oktopus Optimization Engine

Oktopus APIs

Network Application

Developer

Routing Objectives

Resource Constraints

Session Requirements

Control Plane Framework

Multicast
Graphs

Network
Data

service_chaining.py

Fig. 3: Overview of the open-source Oktopus framework.

Algorithm 1 with a destination set to be the direct child of b
(i.e., j) and srv to be Sb.
Deployment. Oktopus can be easily integrated with SDN-
managed ISP networks. For ISP networks that rely on dis-
tributed routing protocols, they can support the centralized
control needed by Oktopus using ideas such as Fibbing [37].

V. IMPLEMENTATION AND EVALUATION

A. Implementation

We have implemented a complete framework to support
managing multicast service chaining in ISP networks. The
framework is implemented in Python and it is open-source
[38]. Figure 3 shows this framework, where the left part of
the figure illustrates an example of using the framework.

As shown in Figure 3, the framework has two main com-
ponents: Optimization Engine and APIs. The Optimization
Engine implements the algorithm presented in §IV to compute
a multicast distribution graph for each given multicast session.
The APIs provide easy interfaces for developers and operators
to create and manage multicast sessions. They are divided
into three subsets: App, Session, and Routing. The App APIs
are used to define the ISP topology and available resources.
The Session APIs are used to specify the multicast session
parameters including their service chaining requirements. The
Routing APIs are used to set the routing objectives (e.g.,
minimum routing cost) and link constraints.

B. Evaluation Setup

To evaluate Oktopus and compare it against others, we
implemented a simulator that calls our framework with various
parameters. We implemented the Oktopus, optimal (OPT), and
MSA [21] algorithms in the current version of our framework.
We implemented OPT using CPLEX 12.8. We implemented
MSA because it is the closest algorithm in the literature
solving the considered multicast service chaining problem.

We use the following five real ISP topologies from the
Internet Topology Zoo [39]: AttMpls (25 nodes), Dfn (57
nodes), Columbus (70 nodes), Ion (125 nodes) and Colt
(153 nodes). We chose these topologies as they constitute
representative samples of different network sizes. We set the

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

link capacity to 10Gbps, and link cost to 1 per bandwidth unit.
Moreover, due to the lack of publicly available data on service
chaining, we use the results of a recent study [40] to generate
the service chain requirements.

We control five parameters for every experiment as follows.
(i) Session characteristics: for every multicast session, its
source node is chosen randomly. In addition, the percentage of
nodes to be destinations is chosen randomly to be 10%, 20%,
30%, or 40% of the total nodes. (ii) Number of sessions: we
vary the number of multicast sessions from 1,000 to 4,000.
For comparison versus OPT, we set the number of multicast
sessions to 10 to ensure that OPT produces a solution within
24 hours. In each generated dataset, 21%, 57% and 22% of
the multicast sessions have bandwidth of 2 Mbps, 7.2 Mbps
and 15 Mbps, respectively [41]. (iii) Service chain length:
we vary the length of the service chain from 3 to 6. (iv)
Service deployment: since different services have different
usage patterns [40], we categorize services into two types,
essential and auxiliary type. Essential services are popular
ones such as firewalls and IDS, and they are deployed at all
ISP nodes. Auxiliary services include services that are not
commonly used such as video encoders and traffic monitors.
For each dataset, we set the percentage of nodes that provide
auxiliary services to be one of 5%, 15%, 25%, 35% or
45%. (v) Service chain ordering: we generate service chains
with different ordering of essential and auxiliary services.
Specifically, we have two orderings: partial and random. In
partial ordering, the essential services are ordered before the
auxiliary services. The first and second services of the service
chain are randomly chosen from essential services, and the rest
of the services are chosen from auxiliary services. In random
ordering, services in the service chain are randomly ordered.

We consider four important performance metrics that mea-
sure the quality of the allocated multicast sessions: (i) Per-
centage of allocated multicast sessions, which is the ratio
between the allocated and total numbers of multicast sessions.
The larger the percentage the better the fulfillment of the ISP
customer requirements. (ii) Average routing cost, which is the
cost of forwarding packets of a multicast session on links
of its distribution graph, and it is defined by b

∑
l∈L γl. (iii)

Average graph size, which is the average number of links of
the calculated distribution graph per session. A small graph
indicates lower delays to reach all destinations. (iv) Average
running time, which is the average elapsed time to calculate
a distribution graph per session. For the routing cost and
graph size, we calculate the standard deviation of the randomly
generated multicast sessions.

In the following, we show representative samples of our
results due to space limitations; other results are similar.

C. Oktopus versus OPT

We compare Oktopus versus OPT in terms of the routing
cost, graph size and running time. We ran OPT on a server
with 128 GB of memory and configured CPLEX to terminate
in 24 hours. We set the numbers of multicast sessions to 10
and 50.

ISP Routing Cost Avg. Graph Size Avg. Running Time
Opt. Gap OPT Oktopus OPT Oktopus

AttMpls 4.75% 10.7 11.3 1.2 s 0.2 s
Dfn 1.75% 23.7 24.1 18 s 0.4 s
Columbus 8.5% 40.7 44.5 42 s 0.6 s
Ion 5.9% 71.9 75.1 1.8 hrs 3.5 s
Colt 5.5% 70.7 74.4 1.4 hrs 6 s

TABLE I: Results of Oktopus versus OPT for 10 sessions.

Results for 10 Sessions. We summarize the results in Table I.
We note that both algorithms allocated all multicast sessions,
so we focus on the other performance metrics. First, the largest
optimality gap between Oktopus and OPT in the considered
topologies is 8.5% for the Columbus topology. This gap ranges
from 1.75% to 5.9% for the other topologies. On average,
the routing cost optimality gap is 5.3%. Second, Oktopus
calculates distribution graphs with similar sizes to the OPT
counterparts. For instance, for the largest topology in our
dataset, Oktopus calculates graphs with only additional five
links per session on average. Moreover, Oktopus produces
distribution graphs with sizes that are 5.5% larger than the
ones produced by the optimal algorithm on average. Finally,
Oktopus is much faster than OPT. As the size of the network
increases, the running time of OPT explodes. For example,
OPT requires 1.8 hrs per session for the Ion topology, while
Oktopus calculates a graph in 3.5s per session. Moreover,
running OPT requires a large amount of memory. For example,
for the Ion ISP topology, OPT requires 55 GB of memory,
while Oktopus requires less than 1 GB of memory.
Results for 50 Sessions. In this case, OPT could not produce
a valid solution for large ISP topologies. For the Ion ISP
topology, for example, OPT spent 24 hours and required
about 100 GB of memory without calculating a final solution.
Oktopus calculated valid distribution graphs for the 50 sessions
in 72 seconds and used less than 1 GB of memory.

D. Oktopus versus the Closest Algorithm

Percentage of Allocated Sessions. We first show in Figure 4
the percentage of allocated multicast sessions in the Ion ISP
topology (of 125 nodes) for different service chain lengths,
deployed auxiliary services percentages, receiver densities, and
service chain orderings. We also set the number of multicast
sessions to 4,000 in these experiments to stress Oktopus and
MSA. The figure shows that Oktopus outperforms MSA across
all the considered scenarios.

Figure 4a shows that Oktopus allocates more multicast
sessions for all service chain lengths. Moreover, the figure
shows that Oktopus performance is consistent even when in-
creasing the service chain length. For instance, it increases the
percentage of allocated multicast sessions by 31% and 30% for
service chain length of 2 and 6, respectively. Figure 4b shows
the allocation performance when increasing the percentage of
deployed auxiliary services. Oktopus can utilize the added
CPU resources more efficiently than MSA as it allocates 30%
more multicast sessions when more auxiliary services are

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

2 3 4 5 6
Service Chain Length

20

40

60

80
%

 A
ll
o
c
a
te

d
 S

e
s
s
io

n
s

Oktopus

MSA

(a) Service chain length

10 20 30 40
% Auxiliary Services

20

40

60

80

%
 A

ll
o
c
a
te

d
 S

e
s
s
io

n
s

Oktopus

MSA

(b) Service deployment

10 20 30 40
% Receivers

20

40

60

80

%
 A

ll
o
c
a
te

d
 S

e
s
s
io

n
s

Oktopus

MSA

(c) Receiver density

partial random
Order Type of Service Chain

0

20

40

60

%
 A

ll
o
c
a
te

d
 S

e
s
s
io

n
s Oktopus MSA

(d) Service order

Fig. 4: Percentage of allocated multicast sessions for different scenarios. # multicast sessions is 4,000.

1000 2000 3000 4000
Number of Sessions

20

40

60

80

100

%
 A

ll
o
c
a
te

d
 S

e
s
s
io

n
s

Oktopus

MSA

(a) Dfn

1000 2000 3000 4000
Number of Sessions

20

40

60

80

100

%
 A

ll
o
c
a
te

d
 S

e
s
s
io

n
s

Oktopus

MSA

(b) Ion

Fig. 5: Percentage of allocated multicast sessions for different
ISP network topologies.

deployed to more nodes. This is because Oktopus considers
the CPU utilization across the available services.

Figure 4c shows that Oktopus allocates more multicast
sessions compared to MSA for different numbers of destina-
tions. For instance, Oktopus increases the number of allocated
multicast sessions by up to 37% when the receiver density
is 10% of the nodes. In another experiment, we control the
order of required services in the service chains; recall that
Oktopus does not assume any knowledge of the service chain
order. Figure 4d demonstrates that the order of services within
service chains does not impact the allocation performance,
and that the performance of Oktopus is robust even when the
service order is random.

Next, we present the percentage of allocated multicast
sessions for two ISP topologies with different sizes in Fig-
ure 5. The figure shows that Oktopus allocates more multicast
sessions than MSA especially when the number of multicast
sessions increases, and its performance is consistent across
the different topologies. For example, when the number of
multicast sessions is 4,000, Oktopus increases the percentage
of allocated multicast sessions by 27% and 28% for the two
topologies, respectively. This means that Oktopus calculates
better paths than MSA while satisfying the required services,
because the proposed path-based approach carefully engineers
each link in the calculated graphs while balancing the load
across different links.
Routing Cost and Graph Size. We next measure the average
routing cost and calculated graph size for the Ion ISP topology
while varying the number of multicast sessions. We observed
similar results for other topologies and scenarios. The figure

is not shown due to space limitations. Our results show that
Oktopus has similar routing cost per multicast session as MSA,
while Oktopus allocates more multicast sessions as previously
shown in Figure 5b. In addition, Oktopus and MSA compute
similar graph sizes. Moreover, the standard deviation of the
graph size of Oktopus is slightly larger than its counterpart
of MSA (by up to two links) as Oktopus balances the traffic
across the links.
Running Time. We measure the average running time to cal-
culate a distribution graph per session for both algorithms. Our
measurements show that Oktopus adds a negligible overhead
on average. Specifically, the average running time is 8.625s
and 8.5s per session for Oktopus and MSA algorithms, respec-
tively. This slight overhead is used towards calculating better
distribution graphs as shown in the previous experiments.

VI. CONCLUSIONS

We considered the problem of multicast service chaining,
which is NP-hard as we showed in the paper. We proposed
a new algorithm, called Oktopus, to calculate multicast distri-
bution graphs that minimize the routing cost per session. The
main idea of Oktopus is to recursively calculate and merge
paths that fulfill the required services from the source to all
destinations. This path-based approach enables Oktopus to
have control over calculated links in the distribution graphs,
which improves the quality of the calculated graphs. We
implemented and evaluated Oktopus using real ISP topologies.
We compared Oktopus versus the optimal solution and the
closest algorithm in the literature. Our experiments showed
that Oktopus computes the distribution graphs with a small
routing cost optimality gap while terminating multiple orders
of magnitude faster than the optimal algorithm. Moreover,
Oktopus increases the number of allocated multicast sessions
by up to 37% compared to the closest algorithm.

ACKNOWLEDGMENT

We thank our shepherd, Gábor Rétvári, and the anony-
mous reviewers for their insightful comments. This work was
partially supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC).

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. Argyraki, S. Rat-
nasamy, and S. Shenker, “Resq: Enabling slos in network function
virtualization,” in Proc. of USENIX NSDI’18, Renton, WA, April 2018,
pp. 283–297.

[2] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “Clickos and the art of network function virtualization,”
in Proc. of USENIX NSDI’14, Seattle, WA, April 2014, pp. 459–473.

[3] E. J. Jackson, M. Walls, A. Panda, J. Pettit, B. Pfaff, J. Rajahalme,
T. Koponen, and S. Shenker, “Softflow: A middlebox architecture for
open vswitch,” in Proc. of USENIX ATC’16, Denver, CO, June 2016,
pp. 15–28.

[4] C. Sun, J. Bi, Z. Zheng, H. Yu, and H. Hu, “Nfp: Enabling network
function parallelism in nfv,” in Proc. of ACM SIGCOMM’17, Los
Angeles, CA, August 2017, pp. 43–56.

[5] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy, and S. Shenker,
“Netbricks: Taking the v out of NFV,” in Proc. of USENIX OSDI’16,
Savannah, GA, November 2016, pp. 203–216.

[6] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks: Shielding
network functions in the cloud,” in Proc. of USENIX NSDI’18, Renton,
WA, April 2018, pp. 201–216.

[7] S. Rajagopalan, D. Williams, H. Jamjoom, and A. Warfield,
“Split/merge: System support for elastic execution in virtual middle-
boxes,” in Proc. of USENIX NSDI’13, Lombard, IL, April 2013, pp.
227–240.

[8] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” in Proc. of ACM SIGCOMM’14, Chicago, IL, August 2014, pp.
163–174.

[9] M. A. Jamshed, Y. Moon, D. Kim, D. Han, and K. Park, “mos: A
reusable networking stack for flow monitoring middleboxes,” in Proc.
of USENIX NSDI’17, Boston, MA, March 2017, pp. 113–129.

[10] B. Li, K. Tan, L. L. Luo, Y. Peng, R. Luo, N. Xu, Y. Xiong,
P. Cheng, and E. Chen, “Clicknp: Highly flexible and high performance
network processing with reconfigurable hardware,” in Proc. of ACM
SIGCOMM’16, Florianopolis, Brazil, August 2016, p. 1–14.

[11] J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar, and
A. Akella, “Paving the way for NFV: Simplifying middlebox modifica-
tions using statealyzr,” in Proc. USENIX NSDI’16, Santa Clara, CA,
March 2016, pp. 239–253.

[12] S. Woo, J. Sherry, S. Han, S. Moon, S. Ratnasamy, and S. Shenker,
“Elastic scaling of stateful network functions,” in Proc. USENIX
NSDI’18, Renton, WA, April 2018, pp. 299–312.

[13] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud,” in Proc. of USENIX
NSDI’16, Santa Clara, CA, March 2016, pp. 255–273.

[14] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” in Proc. of ACM SIGCOMM’12, Helsinki,
Finland, August 2012, p. 13–24.

[15] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P. Bhatotia, and C. Fetzer,
“Shieldbox: Secure middleboxes using shielded execution,” in Proc. of
ACM Symposium on SDN Research (SOSR’18), Los Angeles, CA, March
2018.

[16] “Zuckerberg really wants you to stream live video on Facebook,”
https://bit.ly/2v6uHqF, Wired, April 2016, [Online; accessed August
2020].

[17] V. Gopalakrishnan, B. Bhattacharjee, K. Ramakrishnan, R. Jana, and
D. Srivastava, “CPM: Adaptive video-on-demand with cooperative peer
assists and multicast,” in Proc. of IEEE INFOCOM’09, Rio de Janeiro,
Brazil, April 2009, pp. 91–99.

[18] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li, “Celerity: A
low-delay multi-party conferencing solution,” IEEE Journal on Selected
Areas in Communications, vol. 31, no. 9, pp. 155–164, September 2013.

[21] B. Ren, D. Guo, G. Tang, X. Lin, and Y. Qin, “Optimal service function
tree embedding for nfv enabled multicast,” in Proc. of IEEE ICDCS’18,
July 2018, pp. 132–142.

[19] T. W. Cho, M. Rabinovich, K. R. D. Srivastava, and Y. Zhang, “Enabling
content dissemination using efficient and scalable multicast,” in Proc. of
IEEE INFOCOM’09, Rio de Janeiro, Brazil, April 2009, pp. 1980–1988.

[20] A. Raman, G. Tyson, and N. Sastry, “Facebook (A)Live?: Are Live
Social Broadcasts Really Broadcasts?” in Proc. of the International
World Wide Web Conference (WWW’18), Lyon, France, April 2018.

[22] G. Sallam, G. R. Gupta, B. Li, and B. Ji, “Shortest path and maximum
flow problems under service function chaining constraints,” in Proc. of
IEEE INFOCOM’18, 2018, pp. 2132–2140.

[23] H. Feng, J. Llorca, A. M. Tulino, D. Raz, and A. F. Molisch, “Approxi-
mation algorithms for the nfv service distribution problem,” in Proc. of
IEEE INFOCOM’17, 2017, pp. 1–9.

[24] T. Kuo, B. Liou, K. C. Lin, and M. Tsai, “Deploying chains of virtual
network functions: On the relation between link and server usage,” in
Proc. of IEEE INFOCOM’16, 2016, pp. 1–9.

[25] Z. Xu, W. Liang, M. Huang, M. Jia, S. Guo, and A. Galis, “Approxi-
mation and online algorithms for nfv-enabled multicasting in sdns,” in
Proc. of IEEE ICDCS’17, June 2017, pp. 625–634.

[26] J. Kuo, S. Shen, M. Yang, D. Yang, M. Tsai, and W. Chen, “Service
overlay forest embedding for software-defined cloud networks,” in Proc.
of IEEE ICDCS’17, June 2017, pp. 720–730.

[27] D. Kreutz, F. M. V. Ramos, P. E. Veríssimo, C. E. Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-defined networking: A com-
prehensive survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76,
Jan 2015.

[28] S. A. Amiri, K.-T. Foerster, R. Jacob, and S. Schmid, “Charting the
algorithmic complexity of waypoint routing,” ACM SIGCOMM Comput.
Commun. Rev., vol. 48, no. 1, p. 42–48, Apr. 2018.

[29] L. Huang, H. Hsu, S. Shen, D. Yang, and W. Chen, “Multicast traffic
engineering for software-defined networks,” in Proc. of IEEE INFO-
COM’16, April 2016, pp. 1–9.

[30] C. Filsfils, S. Previdi, L. Ginsberg, B. Decraene, S. Litkowski, and
R. Shakir, “Segment Routing Architecture,” RFC 8402, Tech. Rep. 8402,
July 2018.

[31] J. Edmonds and R. M. Karp, “Theoretical improvements in algorithmic
efficiency for network flow problems,” Journal of the ACM, vol. 19,
no. 2, p. 248–264, Apr. 1972.

[32] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, Third Edition, 3rd ed. The MIT Press, 2009.

[33] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure, C. Filsfils,
T. Telkamp, and P. Francois, “A declarative and expressive approach
to control forwarding paths in carrier-grade networks,” in Proc. of ACM
SIGCOMM’15, London, United Kingdom, 2015, pp. 15–28.

[34] V. Heorhiadi, S. Chandrasekaran, M. K. Reiter, and V. Sekar, “Intent-
driven composition of resource-management sdn applications,” in Proc.
of ACM CoNEXT’18, New York, NY, USA, 2018, pp. 86–97.

[35] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topolo-
gies with rocketfuel,” IEEE/ACM Transactions on Networking (TON),
vol. 12, no. 1, pp. 2–16, February 2004.

[36] V. Heorhiadi, M. K. Reiter, and V. Sekar, “Simplifying software-defined
network optimization using SOL,” in Proc. of USENIX NSDI’16, Santa
Clara, CA, March 2016, pp. 223–237.

[37] S. Vissicchio, O. Tilmans, L. Vanbever, and J. Rexford, “Central control
over distributed routing,” in Proc. of ACM SIGCOMM’15, London,
United Kingdom, August 2015, p. 43–56.

[38] “Oktopus,” https://oktopus-project.org, [Online; accessed August 2020].
[39] “The Internet Topology Zoo,” http://www.topology-zoo.org/dataset.html,

The University of Adelaide, July 2012, [Online; accessed August 2020].
[40] B. Donnet, K. Edeline, I. R. Learmonth, and A. Lutu, “Middlebox

classification and initial model,” https://bit.ly/3dZelXV, Middlebox Clas-
sification and Initial Model, [Online; accessed August 2020].

[41] “Cisco annual internet report (2018–2023) white paper,” https://bit.ly/
2LK6q4M, March 2020, [Online; accessed August 2020].

Authorized licensed use limited to: SIMON FRASER UNIVERSITY. Downloaded on November 25,2020 at 18:40:04 UTC from IEEE Xplore. Restrictions apply.

