
Storage Optimization for 3D Streaming Systems

Khaled Diab Tarek Elgamal Kiana Calagari Mohamed Hefeeda

Qatar Computing Research Institute
Qatar Foundation

Doha, Qatar

ABSTRACT

Three dimensional (3D) content is becoming attractive in en-
tertainment events such as soccer games and movies. Also,
3D displays are widespread at homes, offices, and theaters.
Yet, 3D content may lack good 3D experience due to vary-
ing display technologies and sizes. In addition, 3D content
providers may not be able to deliver their content to all
potential subscribers, which leads to viewership reduction
or dissatisfaction. In this work, we propose the design of
a system for enhanced 3D content streaming. In order to
support all 3D display technologies and sizes in the system,
we design different 3D versions of the original videos that
are optimized for various displays. Moreover, we propose a
storage optimization algorithm that optimizes storage usage
in our system depending on versions popularity as well as
storage and processing requirements. The algorithm satis-
fies the limited processing resources, maximum delay, and
request rate requirements. We implemented and deployed
the proposed system on the cloud for live testing. We simu-
lated the proposed algorithm to study its effect on the stor-
age requirements in 3D streaming systems. The results of
the simulations show that the algorithm can achieve storage
gain up to 360x compared to storing all versions.

Categories and Subject Descriptors

H.5.1 [Information Interfaces and Presentations]: Mul-
timedia Information Systems—Video; H.2.4 [Database

Management]: Systems—Multimedia databases

General Terms

Design, Performance

Keywords

3D video, multimedia streaming, storage optimization, stor-
age management, 3D streaming, stereo video

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MMSys ’14, March 19 - 21 2014, Singapore
Copyright 2014 ACM 978-1-4503-2705-3/14/03 ...$15.00.

The growth of 3D multimedia content, 3D display tech-
nologies and high bandwidth Internet encourage many on-
line streaming services, e.g., YouTube [6] and Trivido [5], to
support 3D streaming. Currently, 3D displays vary in terms
of technologies and sizes. This makes it difficult for content
providers to support different types of displays with good 3D
quality, which may decrease the viewership and satisfaction.

A 3D display is a device that is capable of presenting
a depth perception to the user. Specifically, a 3D display
presents two images, one for the left eye and the other for
the right eye. The brain fuses the two images to give the 3D
perception. Different technologies are used to enable 3D dis-
plays to present the two images needed to create the depth
perception, including stereoscopic and autostereoscopic. In
stereoscopic technology, the viewer needs glasses to control
what each eye can see and at which time. In autostereo-
scopic technology, the viewer does not need glasses. The
display uses optical elements to reflect the light of a view to
the corresponding eye, and block the light of the opposite
view.

Each 3D technology has different display sizes and for each
display technology and size, the 3D content should be con-
verted to a specific 3D format. Therefore, supporting all 3D
display technologies requires generating display-specific 3D
versions. Hence, storage demands for 3D content streaming
systems become much higher than traditional 2D content
streaming systems. Storage demands, however, can be re-
duced by processing 3D videos in real time, at the expense
of increased computation requirements and latency to start
streaming. This creates a trade-off between storage require-
ments and processing resources in 3D streaming systems.

In this paper, we consider the problem of increasing the
viewership while optimizing storage usage in the 3D stream-
ing systems. We focus on the design and implementation
of a 3D streaming system that supports all current 3D dis-
plays and technologies while minimizing the needed storage
by the system. As discussed in Section 2, we are not aware
of previous works that analyze and optimize the storage re-
quirements of 3D streaming systems.

In this paper, we make the following contributions:

• We categorize the 3D displays based on technology and
size.

• We present the design of a 3D streaming system which
enhances the 3D perceptual experience for different
display sizes and technologies.

• We propose an efficient model, called 3D Version Tree,
to represent and manage the creation and processing of

different 3D versions needed to support all 3D display
technologies and sizes.

• We propose a storage optimization algorithm to min-
imize the storage requirements in 3D streaming sys-
tems. The algorithm decides on storing or removing
a 3D version depending on its popularity and storage
and processing requirements.

• We implement a 3D streaming system and evaluate our
storage optimization algorithm using real 3D videos.
Our experiments show that the proposed algorithm
can achieve storage gain up to 360x, while meeting the
delay requirements and available processing capacity
constraints.

The rest of this paper is organized as follows. We describe
related work in Section 2. We present the architecture of the
proposed 3D streaming system in Section 3. In Section 4,
we present the proposed storage optimization algorithm. In
Section 5, we describe the implementation of our proof-of-
concept 3D streaming system, and we evaluate the perfor-
mance of the storage optimization algorithm. We conclude
the paper in Section 6.

2. RELATED WORK
Early efforts in stereoscopic video streaming over the In-

ternet were discussed by Johanson [10] who proposed the
Smile! teleconferencing system. Smile! is a system for
capturing, coding, compression and transmission of stereo
streams. The sender associates two independently encoded
monoscopic video streams and identifies the left view and
the right view. The receiver of monoscopic streams uses
timestamps of the two video streams to synchronize the left
and right video streams for playback. The system was tested
using active shutter-glasses. The main focus of this work is
the transport protocol extension which enables two video
streams to be associated and identified as left and right
views. Pehlivan et al. [15] designed an end-to-end stereo-
scopic video streaming system that selects transmission of
mono or stereo video depending on the available bandwidth
and display equipment. However, the system was tested on
one type of display where end users can view the stereo video
using two projectors and polarized glasses.

Multi-view client-server systems, where a scene can be
displayed from different viewpoints, were discussed in [13],
[11] and [12]. Lou et al. [13] proposed a system where the
server transmits two views requested by the user according
to the viewing angle. This results in a relatively large delay
due to the network latency. Kimata et al. [11] proposed a
similar system with a goal to achieve low delay interactive
3D video live streaming, in which each user can change the
camera angle fast enough to provide realistic feeling of the
event. To achieve fast camera switching, the server trans-
mits the requested multiple views and the client prefetches
multiple views in order to decrease the latency of chang-
ing the views. Kurutepe et al. [12] proposed a system for
efficient transmission of multi-view video over IP networks
based on multicast. Baicheng et al. [20] described a 3D
video streaming system which was developed to distribute
3D content for the 16th Asian Games. The main focus of
this work was 3D media encoder and decoder and there is
no consideration for storage optimization

In addition to the academic works mentioned above, there
has been significant interest from the industry, such as You-

Tube, 3DVisionLive, Trivido, and 3DeeCentral. YouTube
[6] supports multiple 3D formats including anaglyph (red-
cyan , blue-yellow or green-magenta), side by side, row and
column interleaved. In addition, it supports HTML5 stereo
view, which is the format for active-shutter displays that uti-
lize NVIDIA 3D Vision. YouTube also supports 3D content
on autostereoscopic mobile devices such as LG Optimus 3D
cellphone. YouTube is a commercial site with proprietary
closed design. And unlike our system, YouTube does not
change or customize the depth of videos for different dis-
plays. In addition, the storage system of YouTube and its
optimization are not publicly known.

3DVisionLive [3] is a web channel for 3D video stream-
ing and 3D photo sharing. 3DVisionLive uses the Microsoft
Silverlight and IIS smooth streaming technologies. It is,
however, limited to one display technology. In order to view
3D content on 3DVisionLive, NVIDIA active-shutter glasses
are required.

Trivido [5] is a 3D Internet video platform. It supports
anaglyph, side by side, row interleaved 3D formats in addi-
tion to 3D NVIDIA Vision format. Trivido supports only
two display technologies: polarized and active-shutter, and
it does not support autostereoscopic displays, nor does it
address the problem of customizing the content for different
displays.

3DeeCentral [2] supports 3D content on multiple 3D-enabl-
ed devices. Five different classes of displays are supported in
the system: Internet-Connected 3D TVs, Windows 7 desk-
top devices, Windows 7 laptops, Android auto-stereoscopic
devices such as LG Optimus, and HTC Evo 3D, iOS devices
such as iPhone 4, and iPhone 4S. Despite the support of dif-
ferent types of devices, it is not clear whether 3DeeCentral
provides adjusted depth for different sizes.

In summary, there has been significant interest from the
academia and industry in streaming 3D videos and support-
ing various display technologies. However, the problem of
optimizing storage requirements of such 3D streaming sys-
tems has received little attention. In addition, our work
aims at providing a general categorization of 3D videos and
display technologies that can support all current displays.

3. PROPOSED 3D STREAMING SYSTEM
In this section, we discuss the challenges of 3D stream-

ing. Then, we describe the proposed architecture for 3D
streaming systems.

3.1 Challenges of 3D Streaming
Storage and bandwidth demands of 3D content stream-

ing are higher than the traditional 2D content streaming.
Mainly, this is due to the larger number of displays and
technologies that imply generation of multiple versions of
the 3D video with different depth quality. In this section,
we discuss 3D display technologies and their impact on the
storage demands of 3D streaming systems.

3D display technologies can be classified into: (i) stereo-
scopic (require glasses), (ii) autostereoscopic (glasses-free),
and (iii) autostereoscopic with eye tracking. Stereoscopic
displays require wearing special glasses and they are cate-
gorized into Active and Passive. The Active category re-
quires fast display that alternates between left and right
views in synchronization with the glasses. Whereas the
Passive category requires polarization filters on the display
and polarization-based glasses for the viewer. The simplest

���������	�

���� ���������������
���������������
������	���������

������ ������� ��������� ��������� ��������� ���������

��

�������

������

��

�������

������

��

�������

������

������

����

������

����

�� �������

������

��

�� �

�!�������

�����	��
"��

#��������$
���� �
#��������$

��$��
����������

���� �
#��������$

���� �
#��������$

���������	

������	

�%�

���
�� ��

Figure 1: 3D Display Classification.

case of the Passive stereoscopic technology requires anaglyph
glasses and an anaglyph image. An anaglyph image is com-
posed of two differently-colored images, one for each eye.

On the other hand, autostereoscopic displays do not re-
quire any special glasses. Instead they use optical elements
on the display that either block or reflect light to one of the
two eyes. These optical elements are called parallax bar-
riers and lenticular sheets. Two types of autostereoscopic
displays exist: (1) Two views, and (2) Multiview. A mul-
tiview display allows multiple viewers to watch the display
at the same time and each of them can see a different per-
spective according to the viewing angle. Because of their
convenience, autostereoscopic displays have been used in 3D
laptops, tablets and smartphones. The third category of 3D
display technologies is the autostereoscopic with eye track-
ing in which the viewer’s viewing angle is tracked in order to
direct the light to his/her eyes for a better 3D experience.

Figure 1 shows our classification of 3D displays. As shown
in the figure, 3D displays have a wide range of technolo-
gies. For each technology, displays with different sizes are
available as depicted in the second level of the figure. The
third level in the figure shows that for each display tech-
nology, the 3D content needs to be converted to a specific
3D format. Different types of 3D formats are summarized
in Table 1. As a result of the above, the same 3D content
should be stored many times with different formats in order
to be visible on all 3D displays. In addition, 3D content
should be adjusted to enhance 3D experience for different
display sizes. Furthermore, in dynamic network conditions
where the bandwidth varies with time, rate adaptation may
be needed. Rate adaptation will require even creating more
versions for each 3D video.

In summary, the challenges of designing efficient 3D stream-
ing systems include:

• Supporting many 3D display technologies and sizes, as
shown in Figure 1, in order to increase viewership and
satisfaction. The wide range of 3D display technolo-

gies and sizes makes it hard for content providers to
support all these variations.

• Large storage requirements. 3D streaming systems
should store many versions of the same 3D content
according to the technologies and sizes they support.

• Rate adaptation of views and depth due to varying
network conditions. 3D streaming systems should keep
the perceived 3D quality and smooth experience, while
adapting to dynamic network conditions.

3.2 Proposed Architecture
To support most 3D display sizes and technologies de-

scribed in Section 3.1, we propose a generalized structure to
orchestrate the operations for generating various enhanced
3D versions, which we call 3D Version Tree. Each 3D ver-
sion is a copy of the original 3D video, yet optimized for a
specific class of displays.

As shown in Figure 2, the tree root at Level 0 is an input
3D video with no operations at this level. The next level
in the tree is the Size Retargeting Operations, which pro-
cess the input 3D video depending on the target size. These
operations may span scaling up/down, cropping, and depth
enhancement. The output of this level is size-specific N ver-
sions. These versions represent the input for the next level
of operations, which is the 3D Technology Retargeting Op-
erations. These operations enable a 3D viewing experience
on different 3D display technologies, such as anaglyph, row
interleaving, and depth estimation operations. The output
of these operations is technology-specific M versions.

To create a 3D version at Level 2, its parent version should
be created first at Level 1. For example, to create a 3D ver-
sion for a large stereoscopic display, the depth enhancement
size retargeting operation is executed first at Level 1. Then,
the output of this operation is the input for row interleaving
technology retargeting operations at Level 2. The order of
these operations is important to preserve good 3D quality
for the users. Technology Retargeting Operations result in

Format Description

Side By Side The width of the frame is double that of either left or right image, and
the left and right frames are stacked with each other horizontally such
that the left half of the frame is the left view and the right half is the
right view.

Top Bottom The height of the frame is double that of either left or right, and the left
and right frames are stacked with each other vertically such that the top
half of the image is the left view and the bottom half is the right view.

Frame Sequential The left and right views are sent separately one after the other, this for-
mat is used in active stereo displays where the displays alternate between
left and right typically at frequency of 120 Hz.

Anaglyph The left and right views are multiplexed over each other with different
color for each view, typically red and blue. A special glasses with the
same color filter the red color in the left view and the blue color in the
right view resulting in one image for each eye.

Row-Interleaved The left and right views are interleaved with each other horizontally row
by row such that odd rows belong to the left view and the even rows
belong to the right view.

Column-Interleaved The left and right frames are stacked with each other vertically column
by column such that odd columns belong to the left view and the even
columns belong to the right view.

Video Plus Depth The video is encoded in 2D and a separate depth map is created for the
2D video. This format is used in multiview displays because the depth
map allows the creation of many virtual (synthesized) views, which adds
flexibility and supports wider viewing angles for users.

Table 1: Summary of current 3D video formats.

changing (i) pixels ordering, or (ii) color channels. Size Re-
targeting Operations require the original frame as an input.
As a result, we execute Size Retargeting Operations first,
then execute Technology Retargeting Operations. Also, our
tree structure is flexible and can support different aspects
of streaming systems. For example, we can add more levels
to support multiple-bitrate versions and multiple container
formats.

There is a trade-off between supporting large range of dis-
plays in the market, and the storage requirements of different
versions. Specifically, to support all of the current displays,
our system needs to store at least N x M different versions.
As discussed in Section 3.1, we have five 3D display sizes and
seven different display technologies. As a result, we have to
store up to 35 versions to support all 3D displays.

Figure 3 depicts the high level architecture of the pro-
posed 3D streaming system. The proposed system adopts
the client-server architecture. At client side, a user sets his
display preferences. Mainly, these are the display technology
and size. A client application can also be used to automati-
cally collect such information. When a client requests a spe-
cific version, an HTTP request is sent to the server which
generates the version based on the request. Meanwhile, a
DASH-based manifest file URL is constructed and posted-
back to the designated client. The client fetches and parses
the manifest file and downloads the required video segments
accordingly.

The server side consists of Execution Manager, HTTP
Web Server, and Storage Manager. At system initializa-
tion, the server generates Level 1 versions and stores them
into system’s storage. The Execution Manager intercepts
clients’ requests and decides whether to generate new ver-
sions if they do not exist. It also tracks the versions history
and popularity. The interception routine works as follow.

���������	
��

�
�����������
���������
��

����
�� ����
��
�����

���
�����
�

�
����

��������������������
���������
��

��������
��

�������� �
�����

!��
"��
�

�
������������

#� ����

#� ���$

�
�����������$ �
������������

�
���$ �
���%

Figure 2: The proposed 3D Version Tree for manag-

ing the creation of different versions of 3D videos.

������
��������	
�

�����	���
��	

���	��

���������	��

�������

�������������

�������
������������

�������������
��������

������
��������	
�

�����	���
��	

Figure 3: High level architecture of the proposed 3D

streaming system.

Symbol Description

β Storage importance factor, integer in
the range [1− 10]

ci (cycles) CPU cycles to generate the initial seg-
ment of version vi

CPU Resources Number of CPU cores, clock speed and
system memory

hi Popularity (number of requests) of ver-
sion vi

L (sec) Maximum waiting time to create any
3D version in real time

N Average number of requests per second
pi (sec) Processing time to generate the initial

segment of version vi
S (Bytes) Available storage size
T (sec) Time required before start streaming

Table 2: Symbols used in the formulation and solu-

tion of the storage optimization problem.

First, the routine tests whether the requested version exists.
If the version exists, the routine posts-back the associated
URL of the manifest file directly. Otherwise, it constructs
the associated manifest file and starts generating video seg-
ments. To reduce the waiting time in the client-side, a new
processing thread is spawned to generate the required video
segments, while the URL of the manifest file is posted-back
immediately. In the processing thread, the required retar-
geting operation is executed. Then, DASH compatible seg-
ments are generated and the associated manifest file is up-
dated accordingly.

We design the 3D Storage Manager to optimize the system
storage using versions’ popularity as well as storage and pro-
cessing demands. The Storage Manager runs periodically to
decide on storing or removing versions. We describe the 3D
Storage Manager in Section 4.

4. PROPOSED STORAGEOPTIMIZATION

ALGORITHM
In this section, we define the problem of storage manage-

ment in 3D streaming systems. Then, we propose a storage
optimization algorithm for 3D streaming systems.

4.1 Problem Statement and Formulation
The 3D streaming system, described in Section 3, needs

to store many versions besides the original video to support
different 3D displays. This results in a substantial increase
in the storage usage.

We define the storage management problem as follows:

Problem 1 (Storage Optimization). Consider a set
of 3D display sizes and technologies and a set of 3D versions
Vinput = {v1, v2, . . . , vn}. Each version vi has popularity,
size and processing requirements to create it. Find the set of
versions Voutput ⊆ Vinput that minimizes the storage usage
such that the waiting time of users requesting videos does not
exceed a given upper bound and the system available process-
ing resources are not exceeded.

To formulate and solve the above problem, we start by
describing the system model and define several parameters
used in the formulation. For quick reference, Table 2 lists
all symbols used in the formulation. From the perspective
of the storage optimization algorithm, the time is divided
into equal-length periods. The period length is in the order
of hours or days, depending on the scale and dynamics of
the 3D streaming system. Each period has an index, which
is denoted by t, where t = 0, 1, 2, During each period,
viewers request different versions of the 3D videos in the sys-
tem. The total number of requests for a specific 3D version
vi in all previous periods up to the current one is denoted by
hi. We use hi to indicate the popularity of various versions
of the 3D videos in the system. In addition, we denote the
size needed to store version vi by si.

Basically, the storage optimization algorithm uses infor-
mation from previous periods to decide on the 3D versions
that should be pre-created and stored and the ones that
should be created on-demand in order to minimize the stor-
age cost. The decision is constrained by the available pro-
cessing capacity in the system as well as the storage cost
and capacity. The total storage capacity in the system is
denoted by S. The relative cost of the storage system com-
pared to other costs such as processing and network costs
varies from one streaming system to another. To capture
this relative cost, we define the parameter β as the storage
importance factor, which can be used by system administra-
tors to control the importance of optimizing the cost usage
relative to other resources (mainly CPU resources). β is
an integer value in the range [1 − 10], where 1 means that
the storage is less important to optimize, and 10 indicates
that the storage is fairly costly either because of the limited
space or because of the abundance of CPU resources that
are sitting idle.

Since some 3D versions will be created on demand in real
time, the available computing resources need to be consid-
ered in our model. We define an upper bound on the time
taken to generate any 3D version in real time, which is
denoted by L and it is in the order of few seconds. The
maximum time latency L ensures the responsiveness of the
3D streaming system. The processing cost to generate the
3D version vi is denoted by ci, which is expressed in terms
of CPU cycles. Since we use DASH-based streaming, each
video version is divided into segments. And these segments
are served to the user sequentially, not all at once. Thus, ci
is considered to be the cost of generating the initial segment
of version vi, not the cost of generating all segments. Once
the initial segment is generated, it will be served to the user,
and the following segments will be successively created while
the user is viewing earlier segments. We note that the costs
of generating different versions are quite different. For ex-
ample, the cost of generating a video plus depth 3D version
from an input stereo video is substantially larger than the

cost of generating row-interleaved or anaglyph version from
the same stereo video input.

In addition, in our model we consider the number of CPU
cores in the system as well as the available memory. Consid-
ering the memory is important because the video conversion
operations are memory intensive. Thus, the system may not
be able to use all available CPU cores at the same time, be-
cause or memory limitations. We denote the CPU process-
ing time to generate the initial segment of the 3D version vi
by pi and it is calculated as follows:.

pi =
ci × T

ζ/(ρ×N)
, (1)

where N is the average number of user requests per second
that arrive to the 3D streaming system and it is a parameter
set by the system administrator; T is the time required be-
fore start streaming in seconds; ρ is the average percentage
of new 3D versions to be generated; and ζ is the effective
number of CPU cycles per second. Assuming that the cur-
rent period in the system is t + 1, ρ is estimated from the
previous period t as follows:

ρ =

∑

j
Ht(j)Y t

j +
∑

i
Ht(i)Xt

i
∑

j
ht
j +

∑

i
ht
i

, (2)

where Y t and Xt are binary vectors representing stored ver-
sions from period t for Level 1 and Level 2, respectively.
Ht(i) is a binary function that we define as:

Ht(i) =

{

0 hi = 0
1 hi > 0

(3)

The effective number of CPU cycles per second ζ is given
by:

ζ = min(num cores× clock speed,

available RAM

max required RAM
× clock speed). (4)

The parameter ζ limits the number of utilized CPU cores
when the available system memory is low, where max requir−
ed RAM is the maximum system memory required by a re-
targeting operation to execute.

We model our version management strategy as an opti-
mization problem, with the goal to minimize the required
storage subject to available processing resources and initial
delay time. Specifically, our model balances the storage cost
of version vi when it is stored and processing cost to generate
version vi.

With the above model description and definitions, we math-
ematically state the storage optimization problem as follows:

minimize
∑

j

∑

i

β

S
× sij × (1− xij)+

∑

j

∑

i

log (hij + 1)
∑

i
L

× (pi + pj)× xij (5)

subject to
∑

j

∑

i

sij × (1− xij) ≤ S (6)

(pi + pj)× xij ≤ L (7)

pj = x1j × delayj (8)

where

xij =

{

0 version ij is stored
1 otherwise

(9)

where xij is the optimization problem decision variable and
j and i represent Level 1 and Level 2 versions in the 3D Ver-
sion Tree, respectively. Equation (5) is the objective func-
tion, which includes the storage cost for saving version vij
and processing cost for executing operations to generate a
3D version vij . In particular, the storage cost represents
the version size in bytes si normalized by the available stor-
age S. We chose to normalize by S to preserve the balance
between the used and available system storage. The pro-
cessing cost considers the processing delay and popularity,
where it is normalized by summation of the maximum de-
lay over all versions. We design our optimization model to
consider the processing cost for a Level 2 version when its
parent version (at Level 1) does not exist. Equations (6)
to (8) represent storage, maximum waiting time, and parent
processing constraints, respectively. Particularly, the total
storage requirements of stored versions must not exceed the
available storage S. Also, the total processing time to gen-
erate a new version is bounded by the maximum waiting
time L. By substituting Equation (8) in Equation (5), the
optimization problem is quadratic in x.

4.2 Proposed Solution
The quadratic optimization model presented in the previ-

ous section is computationally expensive to solve for large-
scale systems, in which the number of videos is large. To
address this complexity, we propose an algorithm that com-
putes the solution much faster and produces near-optimal
solutions. We relax our original optimization model into
two consecutive linear programming models. The first one
optimizes the storage in Level 1 of the versions tree as fol-
lows:

minimize
∑

j

β

S
× sj × (1− yj) +

∑

j

log (hj + 1)
∑

j
L

× pj × yj

(10)

subject to
∑

j

sj × (1− yj) ≤ S (11)

pj × yj ≤ L (12)

where

yj =

{

0 version j is stored
1 otherwise

(13)

where y is the Level 1 optimization decision variable. The
second optimization problem optimizes the storage in Level
2 given the output of the first linear model:

minimize
∑

j

∑

i

β

S
× sij × (1− xij)+

∑

j

∑

i

log (hi + 1)
∑

i
L

× (pi + pjyj)× xij (14)

subject to
∑

j

∑

i

sij × (1− xij) ≤ S −
∑

j

sj × yj (15)

(pi + pj × yj)× xij ≤ L (16)

where

xij =

{

0 version ij is stored
1 otherwise

(17)

Equations (15) and (16) represent the storage and maximum
waiting time constraints in the Level 2 optimization prob-
lem, respectively. In Equation (15), we subtract the used
storage in Level 1 optimization problem

∑

j
sj × yj from

the available storage S. This guarantees that the solver sat-
isfies storage requirements for Level 1 and Level 2. In Equa-
tion (16), pj processing delay is included when the parent
version j is not stored and needs to be generated.

We implemented a brute-force solver for the quadratic
programming model. Our solver generates all solutions and
searches for the solution with the minimum objective func-
tion value and satisfies the constraints. We compared the
brute-force solver results with the relaxed model described
above for small dataset. The difference between the outputs
of the two approaches is small. However, the running time
of the brute-force solver is large. For example, we solved
the optimization problem in Equation (5) for 15 3D versions
in two hours. On the other hand, our relaxed optimization
problem in Equation (10) and Equation (14) finished in less
than two seconds for the same dataset. For larger systems,
the problem can not be solved on a practical time scale.

Algorithm 1 describes the proposed algorithm. The al-
gorithm runs periodically to decide on storing 3D versions.
We use vector notation to indicate vector operations. From
previous period t information, we construct two binary vec-
tors ~Y t of size M1 and ~Xt of size M2 that represent whether
Level 1 and Level 2 version is stored, respectively. Then,
we calculate the percentage of expected new versions to be
processed ρ, number of utilized CPU cores ζ and storage
weighting parameter. We compute the processing time vec-
tor for Level 1 versions ~pj and processing weighting param-
eter vector. Thereafter, we run the optimization solver for
Level 1 versions whose output is the vector ~Y t+1. Besides
~Y t+1, the processing time vector ~pi and processing weighting
parameter vector are inputs for Level 2 optimization solver.
Vectors ~Y t+1 and ~Xt+1 are the decision variables of versions
removal for period t+ 1.

The time complexity of the proposed algorithm is calcu-
lated by summing the time complexities of constructing ~Y t

and ~Xt vectors, computing internal parameters and solving
two linear programming optimization problems. This can
be described by:

Algorithm 1 Proposed Storage Optimization Algorithm

Input: M1 Total number of versions in Level 1
Input: M2 Total number of versions in Level 2
Input: ~VN A set of stored versions for period t of size N
1: ~Y t = get Y(~VN)

2: Y stored = size(~Y t) where ~Y t
j = 0

3: ~Xt = get X(~VN)

4: X stored = size(~Xt) where ~Xt
i = 0

5: total history = sum(~hj) + sum(~hi)
6: ρ = (Y stored+X stored)/total history
7: ζ = min(cpu cores, available ram/max ram) x

clock speed
8: ~pj = (~cj × T) / (ζ / (ρ × N))

9: ~αj = log(~hj + 1) / (M1 x L)

10: ~Y t+1 = run optimizer level one(ρ, ζ, ~pj , β / S, ~αj)
11: ~pi = (~ci × T) / (ζ / (ρ × N))

12: ~αi = log(~hi + 1) / (M2 x L)

13: ~Xt+1 = run optimizer level two(~Y t+1, ρ, ζ, ~pi, β / S,
~αi)

14: remove Level 1 versions where ~Y t+1

j = 1

15: remove Level 2 versions where ~Xt+1

i = 1

Time Complexity = O(construct Y) +O(construct X)+

O(parameters) +O(Level 1 solver) +O(Level 2 solver)

The time complexity for vectors construction and parame-
ters’ calculation is O(M1)+O(M2). Thus, the above formula
can be reduced to:

Time Complexity = O(M1) +O(M2)+

O(Level 1 solver) +O(Level 2 solver)

The time complexity of optimization solver depends on the
used algorithm. In our system, we use the Simplex algo-
rithm [14], which is fast for most practical applications. In
addition, the work by Spielman and Teng [18] shows that
the Simplex algorithm has polynomial time complexity us-
ing smoothed analysis.

5. EVALUATION
In the following, we present a proof of concept prototype

of the proposed 3D streaming system. Then, we evaluate the
proposed storage optimization algorithm. First, we describe
the used dataset, storage optimization parameters and per-
formance metrics. Then, we present the experimental results
that show the effectiveness of the algorithm. We study the
effect of maximum delay variation on storage usage. Also,
we vary the request rate and examine its effect on the stor-
age. We show the importance of our algorithm by compar-
ing it with storing Level 1 versions. Finally, we conduct
experiments to show the impact of processing resources and
storage cost on the storage usage and gain.

5.1 Proof of Concept Prototype
We implemented the streaming system as described in

Section 3. The server-side is implemented as follows. We
developed user-space operations framework using C++ and
OpenCV [4]. Our framework provides stable interfaces, in-
put and output management, state management and inputs

 0

 100

 200

 300

 400

 500

 600

 700

 0 1
50

0

 3
00

0

 4
50

0

 6
00

0

 7
50

0

 9
00

0

 1
05

00

 1
20

00

 1
35

00

 1
50

00

H
is

to
ry

Rank

Figure 4: Version popularity distribution.

and outputs propagation to and from operations. Then, we
implemented the operations of depth manipulation, anaglyph,
row interleaving and depth estimation.

We used Apache Server [8] as an HTTP web server. We
activated the mod_headers module in the Apache Server
to control specific HTTP headers such as Access-Control-
Allow-Origin, Access-Control-Allow-Methods, Access-Cont-
rol-Allow-Headers and Accept-Ranges. Moreover, we im-
plemented our storage optimization algorithm described in
Section 4 using Python. We deployed our system on the
cloud using Amazon Web Services [7].

For streaming purposes we adopt the Dynamic and Adap-
tive Streaming over HTTP (DASH) protocol [9, 19, 17].
DASH is an adaptive streaming technology, which provides a
standard approach to enable audio and video streaming over
HTTP. Specifically, DASH comprises two components; en-
coded audio/video streams called Media Presentations and a
manifest file called Media Presentation Description (MPD).
MPD is an XML file which describes the Media Presenta-
tions and the alternative streams according to bandwidth.
DASH has several advantages over previous streaming proto-
cols and technologies. First, streaming using HTTP servers
is cost effective due to the existence of off-the-shelf web
servers. Second, most firewalls allow HTTP connections un-
like other streaming protocols. Third, video segments are
considered as regular files, which can be cached and deployed
in Content Delivery Networks (CDNs). Fourth, rate adap-
tation helps the client to switch between available bitrates
depending on the varying network conditions, hence, deliv-
ering the best viewing experience. Fifth, the existence of a
standard makes it easy for content providers to implement
streaming infrastructures.

At the client-side, we developed two applications. The
first one is a web client that uses HTML5 and DASH-JS [16].
DASH-JS is a JavaScript DASH library for the Google Chr-
ome web browser. The second client is an Android client
for HTC and LG phones, where we implemented a DASH
client from scratch using Java and Android SDK [1]. We
implemented MPD parser, HTTP client, and segment-based
renderer. We tested our system using different 3D display
sizes and technologies. Several 3D videos were processed
and tested on all displays using the clients described before.
The 3D quality was visually verified.

 0

 5

 10

 15

 20

 25

 0 3000 6000 9000 12000 15000

S
iz

e
 (

M
B

)

Versions

Figure 5: Version size histogram.

Property Value

Mean 4.47
SD 4.5

Median 2.89
Mode 1.31

Maximum 24.5
Minimum 0.06

Table 3: Statistical properties in MB of size distri-

bution.

5.2 Evaluation of the Storage Optimization Al-
gorithm

We implemented a simulator to stress our storage opti-
mization algorithm (SOA). We assume a single server setup
with commodity processing resources. The server runs our
algorithm daily to decide on storing or removing 3D ver-
sions. To evaluate our storage optimization algorithm using
reasonable dataset, we downloaded 10, 000 3D videos from
YouTube. For each video, we gathered data about its du-
ration, byte size, viewing history, frame rate and category.
We used this information to synthesize our dataset. We
generated a random dataset of 15, 000 3D versions using the
same histograms of the downloaded videos. Figures 4 and 5
and Table 3 show the statistical distributions and proper-
ties of our dataset. Figure 4 depicts the version popularity
distribution, which follows the Zipf distribution. Figure 5
presents the version size distribution in our dataset. The
mean size is 4.47 MB and the standard deviation is 4.5 MB.
Table 3 lists more statistical properties of the distribution.

We set the parameters of our algorithm as listed in Ta-
ble 4. We set the available storage S and maximum waiting
time L as 100 GB and 5 seconds, respectively. The request
rate N is 100 requests per second and the storage cost β is
5. We assume having a single server with 8 CPU cores and
12 GB of memory. These values result in versions processing
timings equal to 2.1, 1.1, 0.2 and 0.1 seconds for depth es-
timation, depth manipulation, row interleave and anaglyph,
respectively. These processing times were obtained empiri-
cally by measuring the time to convert a stereoscopic input
video to the requested video version.

We use the storage in GB as a performance metric to show
the effectiveness and importance of our storage optimization

Parameter Value

L 100 GB
S 5 seconds
N 100 requests per second
β 5

CPU cores 8
System Memory 12 GB

Table 4: Used algorithm parameters throughout our

experiments.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1 2 3 4 5 6 7 8 9 10

U
s
e

d
 S

to
ra

g
e

 (
G

B
)

Maximum Delay (Seconds)

Storage-All
Storage-Level 1

Storage-SOA

Figure 6: Effect of Maximum Waiting Time on Stor-

age.

algorithm. In each experiment, we measure the total storage
used by our algorithm. We use the same dataset described
before for all experiments and same algorithm parameters
unless stated otherwise. Running the same experiment mul-
tiple times does not affect the results, since we are using a
deterministic mathematical model.

5.3 Effect of MaximumWaiting Time (L)
In this experiment, we study the impact of the maximum

delay on the available storage. Figure 6 shows the results of
applying our algorithm while varying the maximum delay.
When L is less than 0.1 seconds, our algorithm decides to
store up to 85% of the versions since the lowest processing
time in our experiments is 0.1 seconds. If L is increased to
be 0.5 seconds, only 47% of the versions are stored because
two versions, row interleave and anaglyph, can be processed
in less than 0.5 seconds. Generally, setting L to a value x
allows our algorithm not to store a version whose processing
time is less than x.

This experiment presented the effectiveness of our algo-
rithm to optimize storage usage with respect to client wait-
ing time. Decreasing waiting time gives larger value to the
objective function, hence, our algorithm decides to store
more versions to minimize the overall cost. By storing more
versions, our system is able to satisfy tight time require-
ments. On average, our algorithm achieves up to 105.4x
storage gain compared to storing all versions, while satis-
fying available processing resources and maximum waiting
time.

5.4 Effect of Request Rate (N)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2
00

 4
00

 6
00

 8
00

 1
00

0

 1
20

0

 1
40

0

 1
60

0

 1
80

0

 2
00

0

U
s
e

d
 S

to
ra

g
e

 (
G

B
)

Requests per Second (N)

Storage-All
Storage-Level 1

Storage-SOA

Figure 7: Request Rate Effect on Storage.

 2 4 6 8 10 12 14 16

CPU Cores

 2

 4

 6

 8

 10

 12

 14

 16

R
A

M

 0

 20

 40

 60

 80

 100

 120

 140

 160

Figure 8: Achieved storage gain when changing

CPU cores and system memory.

We simulate the case of increasing the request rate N .
We measure the extra storage in GB required to handle the
request rate increase compared to an initial storage. We gen-
erate clients’ requests for the next day depending on versions
popularity. For generation, we sample requests from a Zipf
distribution whose parameter s is equal to 2.3. We estimate
the parameter s from our dataset described before.

We compare the storage requirements of our storage op-
timization algorithm with storing all versions and storing
Level 1 versions, while increasing request rate. The distinc-
tion between the three approaches is that our algorithm uses
version’s information to decide on storing it, while the other
approaches stores versions blindly without considering ver-
sion’s popularity, processing and storage requirements.

Figure 7 depicts the comparison of our algorithm and the
other approaches. Compared to storing all versions when the
request rate increases, our algorithm stores the most popular
versions that are likely to be watched again. Our algorithm
outperforms storing all versions by 400%. In addition, our
algorithm outperforms storing Level 1 versions by 2.3x on
average. For the same dataset and clients’ requests, our
algorithm requires 17.5 GB of storage, whereas storing Level
1 versions requires 26.1 GB.

5.5 Trade-off between Storage and Processing
Resources

The availability of CPU and memory resources affects the
storage usage. In our algorithm, we incorporate available
processing resources such that they are shared among ver-
sions to be processed. In this experiment, we vary the num-
ber of CPU cores and system memory (RAM) and measure
the storage usage. We do not increase the number of CPU
cores more than 16 cores for two reasons. First, we assume
one single server setup with commodity hardware. Second,
increasing the number of CPU cores affects the storage usage
until reaching a limit depending on our versions’ processing
requirements. Figure 8 shows a heat map of the storage gain
while increasing the CPU cores and system memory. Both
storage usage and gain are 3D functions with respect to CPU
cores and memory. We project their values as heat maps for
convenience. In a heat map, large values are hot thus are
colored with red and yellow; they appear as lighter areas in
the figure. On the other hand, small values are considered
cold and colored with blue, where they are represented by
the darker areas. On average, our algorithm achieves 36.2x
storage gain when varying processing resources.

The results of this experiment show two aspects of our
algorithm. First, our algorithm adaptively stores more ver-
sions in case of shortage in processing resources. Second,
the algorithm uses the smallest number of CPU cores that
satisfies memory requirements. If there are more available
CPU cores than memory, our algorithm does not use them.
This is important to avoid unnecessary memory swapping.
For example, when the system memory is set to 12 in Fig-
ure 8, we achieve larger storage gain as increasing the num-
ber of CPU cores increases until this number reaches 6 CPU
cores. If there is more available memory than CPU cores,
our algorithm uses the required memory only to avoid cores’
over-subscription which leads to extra context switching.

5.6 Impact of Storage Cost (β)
We study the effect of the storage cost β on the perfor-

mance of our algorithm. β is a user-defined parameter that
determines the storage importance of a version compared to
its processing requirements. In our algorithm, it is an inte-
ger parameter whose value ranges from one to ten. Figure 9
shows the result of this experiment. Small β values mean
that the storage is inexpensive, which guides our algorithm
to store more versions. On the contrary, large β values guide
the algorithm to remove more versions since the storage is
expensive. Costly storage does not necessarily imply price
per storage unit; it may mean storage availability.

This experiment verifies our algorithm behavior, when
modifying the storage cost parameter. Specifically, our algo-
rithm achieves storage gain up to 360x and 141x on average.
The storage cost parameter can be viewed as an external
parameter that guides our algorithm to decide on storing
versions depending on the storage physical state, storage
price, or storage availability.

6. CONCLUSIONS AND FUTUREWORK
We presented the design of a general architecture for a

3D streaming system. The goal of this system is to increase
the viewership of 3D content, by serving various 3D ver-
sions optimized to different display technologies and sizes.
We focused on the problem of storage management in this

 0

 1

 2

 3

 4

 5

 6

 7

 1 2 3 4 5 6 7 8 9 10
 0

 50

 100

 150

 200

 250

 300

 350

 400

U
s
e

d
 S

to
ra

g
e

 (
G

B
)

Storage Cost (β)

Storage
Gain

Figure 9: Impact of storage cost parameter on stor-

age usage.

3D streaming system. We proposed a storage optimization
algorithm. The algorithm decides on storing a 3D version
depending on its popularity as well as storage and process-
ing requirements. The algorithm considers system-aspect
constraints such as limited storage capacity, limited process-
ing resources and tight Quality of Service (QoS) conditions.
We developed server-side components that process the orig-
inal 3D videos and execute the storage algorithm. We im-
plemented the operations of depth manipulation, anaglyph,
row interleaving and depth estimation. We deployed these
server-side components on the cloud using Amazon Web Ser-
vices. Several videos have been processed using our system
and tested on different displays.

We evaluated the performance of the storage optimization
algorithm using simulation. The results of the simulation
show that the algorithm: (1) can achieve storage gain up to
360x, (2) meets tight Quality of Service (QoS) requirements,
and (3) handles the case of high request rate efficiently.

In the future, we plan to extend our algorithm to manage
storage of multi-bitrate 3D videos, and videos with different
container formats.

7. REFERENCES

[1] Android SDK .
http://developer.android.com/sdk/index.html.

[2] 3DeeCentral. http://www.3deecentral.com/.

[3] 3DVisionLive. https://www.3dvisionlive.com/.

[4] OpenCV. http://opencv.org/.

[5] Trivido. http://www.trivido.com/.

[6] Youtube. http://www.youtube.com/.

[7] Amazon.com . Amazon Web Services .
http://aws.amazon.com/.

[8] The Apache Software Foundation . Apache, HTTP
Server Project . http://httpd.apache.org/.

[9] ISO/IEC 23009-1:2012. Information technology –
Dynamic adaptive streaming over HTTP (DASH) –
Part 1: Media presentation description and segment
formats.

[10] M. Johanson. Stereoscopic video transmission over the
internet. In Proc. of IEEE Workshop on Internet
Applications (WIAPP’01), pages 12–19, Washington,

DC, July 2001.

[11] H. Kimata, K. Fukazawa, A. Kameda, Y. Yamaguchi,
and N. Matsuura. Interactive 3d multi-angle live
streaming system. In Proc. of IEEE International
Symposium on Consumer Electronics (ISCE’01),
pages 576–579, Singapore, June 2011.

[12] E. Kurutepe, M. R. Civanlar, and A. M. Tekalp.
Interactive transport of multi-view videos for 3dtv
applications. Journal of Zhejiang University
SCIENCE A, 7(5):830–836, May 2006.

[13] J.-G. Lou, H. Cai, and J. Li. A real-time interactive
multi-view video system. In Proc. of ACM
International Conference on Multimedia, pages
161–170, Singapore, November 2005.

[14] J. A. Nelder and R. Mead. A simplex method for
function minimization. The Computer Journal,
7(4):308–313, January 1965.

[15] S. Pehlivan, A. Aksay, C. Bilen, G. B. Akar, and
M. R. Civanlar. End-to-end stereoscopic video
streaming system. In Proc. of IEEE International
Conference on Multimedia and Expo, pages 2169–2172,
Toronto, Canada, July 2006.

[16] B. Rainer, S. Lederer, C. Mueller, and C. Timmerer.

A seamless web integration of adaptive http
streaming. In Proc. of European Signal Processing
Conference (EUSIPCO’12), pages 1519–1523,
Bucharest, Romania, August 2012.

[17] I. Sodagar. The mpeg-dash standard for multimedia
streaming over the internet. IEEE Multimedia
Magazine, 18(4):62–67, April 2011.

[18] D. Spielman and S.-H. Teng. Smoothed analysis of
algorithms: Why the simplex algorithm usually takes
polynomial time. In Proc. of ACM Symposium on
Theory of Computing (STOC’01), pages 296–305,
Hersonissos, Greece, July 2001.

[19] T. Stockhammer. Dynamic adaptive streaming over
http: standards and design principles. In Proc. of
ACM Conference on Multimedia Systems (MMSys’11),
pages 133–144, San Jose, CA, February 2011.

[20] B. Xin, R. Wang, Z. Wang, W. Wang, C. Gu,
Q. Zheng, and W. Gao. Avs 3d video streaming
system over internet. In Proc. of IEEE International
Conference on Signal Processing, Communication and
Computing (ICSPCC’12), pages 286–289, Hong Kong,
August 2012.

