
Content-aware Video Encoding for Cloud Gaming
Mohamed Hegazy

Simon Fraser University
mehagzy@sfu.ca

Khaled Diab
Simon Fraser University

kdiab@sfu.ca

Mehdi Saeedi
Advanced Micro Devices, Inc.
Mehdi.Saeedi@amd.com

Boris Ivanovic
Advanced Micro Devices, Inc.
Boris.Ivanovic@amd.com

Ihab Amer
Advanced Micro Devices, Inc.

Ihab.Amer@amd.com

Yang Liu
Advanced Micro Devices, Inc.

Yang.Liu1@amd.com

Gabor Sines
Advanced Micro Devices, Inc.

Gabor.Sines@amd.com

Mohamed Hefeeda
Simon Fraser University

mhefeeda@sfu.ca

ABSTRACT
Cloud gaming allows users with thin-clients to play complex games
on their end devices as the bulk of processing is offloaded to remote
servers. A thin-client is only required to have basic decoding capabil-
ities which exist on most modern devices. The result of the remote
processing is an encoded video that gets streamed to the client.
As modern games are complex in terms of graphics and motion,
the encoded video requires high bandwidth to provide acceptable
Quality of Experience (QoE) to end users. The cost incurred by the
cloud gaming service provider to stream the encoded video at such
high bandwidth grows rapidly with the increase in the number of
users. In this paper, we present a content-aware video encoding
method for cloud gaming (referred to as CAVE) to improve the
perceptual quality of the streamed video frames with comparable
bandwidth requirements. This is a challenging task because of the
stringent requirements on latency in cloud gaming, which impose
additional restrictions on frame sizes as well as processing time
to limit the total latency perceived by clients. Unlike many of the
previous works, the proposed method is suitable for the state-of-
the-art High Efficiency Video Coding (HEVC) encoder, which by
itself offers substantial bitrate savings compared to prior encoders.
The proposed method leverages information from the game such as
the Regions-of-Interest (ROIs), and optimizes the quality by allocat-
ing different amounts of bits to various areas in the video frames.
Through actual implementation in an open-source cloud gaming
platform, we show that the proposed method achieves quality gains
in ROIs that can be translated to bitrate savings between 21% and
46% against the baseline HEVC encoder and between 12% and 89%
against the closest work in the literature.

CCS CONCEPTS
• Information systems →Multimedia streaming.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MMSys ’19, June 18–21, 2019, Amherst, MA, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6297-9/19/06. . . $15.00
https://doi.org/10.1145/3304109.3306222

KEYWORDS
Cloud Gaming, Content-based Encoding, Video Streaming

ACM Reference Format:
Mohamed Hegazy, Khaled Diab, Mehdi Saeedi, Boris Ivanovic, Ihab Amer,
Yang Liu, Gabor Sines, and Mohamed Hefeeda. 2019. Content-aware Video
Encoding for Cloud Gaming. In 10th ACM Multimedia Systems Conference
(MMSys ’19), June 18–21, 2019, Amherst, MA, USA. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3304109.3306222

1 INTRODUCTION
Video games nowadays contain complex graphical scenes, light and
shader effects as well as interactions based on physics and complex
calculations. Playing such games at high quality requires installing
expensive high-end graphics cards at end user devices. Moreover,
the heterogeneity of user devices has pushed the gaming industry
towards developing customized versions of the same game for each
family of devices; thus, increasing the cost and time to market for
these complex games [5]. Cloud gaming has emerged to alleviate
these costs for end users and the gaming industry.

There is currently a substantial interest in cloud gaming from
industry and academia. The size of the cloud gaming market is
projected to be US$4 billion dollars in 2023, up from US$1 billion
dollars in 2017 with a CAGR of 26.12% [4]. Many major companies
offer cloud gaming services, including Sony’s PlayStation Now
[36], NVIDIA’s GeForce Now [11], LiquidSky [29], Google’s Project
Stream [16], and Microsoft’s Project xCloud [7]. Furthermore, these
cloud gaming service providers (CGSPs) are supported by numerous
other companies offering hardware and software products, such as
the AMD’s ReLive gaming streaming system [1], and the hardware
encoding capability of AMD’s GPUs in Steam Link [12].

At its essence, cloud gaming moves the sophisticated game logic
and rendering from devices at end users to servers deployed in cloud
data centers. This means that servers need to encode the rendered
game frames and stream them to clients. This, however, imposes
significant bandwidth requirements on the CGSP, especially for
popular, graphics-rich video games with thousands of concurrent
users. For example, the minimum bandwidth that CGSPs require
from each client ranges from 5 Mbps [29, 36] to 15 Mbps [11], while
the recommended bandwidth is between 20 and 25 Mbps [11, 29].

The goal of this paper is to improve the perceptual quality of the
streamed video frames, given a target bandwidth requirement. This

60

https://www.acm.org/publications/policies/artifact-review-badging/#available
https://www.acm.org/publications/policies/artifact-review-badging/#functional

MMSys ’19, June 18–21, 2019, Amherst, MA, USA M. Hegazy et al.

is a challenging task in cloud gaming, because such an environ-
ment imposes strict requirements especially on latency and quality
fluctuations. For latency, games require high responsiveness, since
high latencies make players become out of sync with the server
and can cause them to lose in the game which can drive them away
from cloud gaming. Previous studies, e.g., [10], showed that some
latency-sensitive games require latency as low as 50 milliseconds,
while most games cannot tolerate a latency above 100 milliseconds.
This low latency requirement also restricts the amount of buffering
a client can have [18]. The maximum amount of data to be buffered
is at most one frame for low latency applications [42], as opposed
to regular video streaming, e.g., services offered by YouTube and
Netflix, which can buffer multiple frames or even seconds [33]. In
addition, since games have frequent scene changes, encoders will
generate more bits at these scene changes. This may result in frames
of significantly different sizes, introducing rate fluctuations and
possible stalls in the video streams. Furthermore, the low latency
requirement and the scale of current clients do not allow utilizing
complex content analysis tools to optimize the encoding process.

In this paper we propose a Content-Aware Video Encoding
(CAVE) method for cloud gaming, which optimizes the quality by
allocating different amounts of bits to various areas in each video
frame. CAVE has two main steps. First, it assigns weights to blocks
in video frames based on the importance of these blocks from the
perspective of players. It, then, allocates bits to blocks based on
their weights, while meeting the low-latency requirement of cloud
gaming and achieving consistent quality of the encoded frames.

Unlike most previous works, e.g., [30, 38], we have designed
CAVE for the state-of-the-art HEVC encoder [37], which by itself
achieves much higher compression ratios compared to the previ-
ous encoders. We have implemented and integrated CAVE in the
open-source GamingAnywhere cloud gaming platform [17]. We
conducted an extensive empirical study with various video gaming
segments, and measured multiple quality metrics, bitrate savings,
and processing overheads imposed by CAVE. We compare CAVE to
the base HEVC encoder and the closest work in the literature [38],
referred to as RQ (Rate-Quantization) method, which we imple-
mented on top of the HEVC encoder. Our results show that CAVE
consistently outperforms both the base HEVC encoder and RQ by
wide margins. For example, CAVE can reduce the bitrate needed
to achieve the same quality in the most important areas (regions
of interest, ROIs) in the frames by up to 46% compared to the base
HEVC encoder running with the most recent rate control model
(i.e., the λ−domain model [25]). Compared to RQ, the gain is even
higher, because the proposed content-aware rate control algorithm
in CAVE is more accurate than the one used in RQ. Also, CAVE is
able to run in real-time without affecting the latency requirements
of cloud gaming.

The remainder of the paper is organized as follows. In Section 2,
we discuss the related works in the literature. In Section 3, we
present the details of the proposedmethod. In Section 4, we describe
our implementation and experimental study. We conclude the paper
in Section 5. In the Appendix, we describe the structure of our
source code (publicly available) and the steps needed to reproduce
the results in this paper.

2 RELATEDWORK
At a high level, optimization of cloud gaming systems can be divided
into two main areas [5]: (i) Cloud Infrastructure and (ii) Content
and Communications. The first area includes problems such as
allocation of server resources to clients to maximize the user’s QoE
and minimize the cost incurred by cloud gaming providers [14]. It
also includes proposing new architectures for cloud gaming systems
such as introducing edge servers to reduce the latency perceived
by clients [8]. The second area includes various optimizations for
the compression methods of gaming content as well as adaptive
transmission methods to cope with the network dynamics [15]. The
work in this paper belongs to the second area.

The second optimization area can further be divided into two
categories. The first category tries to reduce the amount of bits
needed to transmit and render the graphical structures of games.
For example, the work in [28] simplifies the 3D models of the game
on the server and sends the simplified models to be rendered on
the client device. The work in [9] constructs a base layer of the
graphical structures, which is sent to the client device. It then
encodes the difference between the full quality and base layer as
an enhancement layer, which is sent to clients if there is enough
bandwidth. The second category in this area does not manipulate
the graphical structures of the content. It rather optimizes the
encoding of the resulting frames to be transmitted to the clients.
Methods in this second category are the most commonly used by
cloud providers, as they do not require changes to the internals of
the games. CAVE belongs to this specific category and we will thus
describe it in more detail.

Multiple works in the literature have been proposed to optimize
the quality of the encoded game video streams. In [30], an average
of the importance and the depth of pixels are used to distribute bits
in the frame and enhance their quality for an H.264/AVC encoder. A
disadvantage of this approach is that the ROI might end up with a
lower quality than a non-ROI, if the ROI happens to be far from the
virtual camera. In [38], an ROI-based rate control method relying on
a Rate-Quantization model is devised for H.264/AVC. We improve
upon their work by using the latest HEVC encoder and proposing
a better weight assignment which is configurable based on the
desired discrepancy in quality between ROIs and non-ROIs.

A game attention model is introduced in [2] by combining a
top-down approach based on the current activity in the game and a
bottom-up approach based on a saliency map to reduce the bitrate
by giving less important areas a higher quantization parameter
(QP). However, this work does not perform rate control in the sense
that it tries to use a lower bitrate than the target bitrate. This is
done by dividing the frame into different levels of importance and
assigning different QPs to them. As a result, the produced bitrate
will be lower than the bitrate resulting from assigning all the areas
a QP value corresponding to the highest level of importance. In
our work, we try to improve the quality of ROIs under the same
bitrate. Also, the saliency models rely on expensive computations
and do not always capture the actual user’s attention. A control-
theoretic algorithm is proposed in [22] to provide ROI-based rate
control for an H.264/AVC encoder. Unlike our proposed method,
this work assumes having only a single ROI in the middle of the

61

Content-aware Video Encoding for Cloud Gaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

screen and varies its size based on the drift between the target and
actual bitrates.

Eye tracking data from clients are used in [19] to enhance the
quality of ROIs. This approach assumes that clients have eye track-
ing devices at their disposal, which is not realistic as these devices
are expensive and are not relevant to the game. The impact of video
encoding parameters such as the frame rate and bitrate on the
user’s QoE is studied in [35]. This study concluded that different
encoding configurations should be employed with different game
genres. ROI-based encoding techniques were proposed in [26, 31]
for HEVC. However, these works target video conferencing appli-
cations, thus their methodology for weight calculation may not be
suitable for cloud gaming as the content is significantly different.

Finally, an important component of the optimization of game
video streams is controlling the bitrate. The relationship between
the distortion and the resulting bitrate can be modeled using one
of the following models:

• Q-domain R-D [6]: creates a relationship between the bitrate
and the quantization parameter.

• ρ-domain R-D [39]: creates a relationship between the bitrate
and the percentage of transformed coefficients with a value
of zero after quantization.

• λ-domain R-D [25]: creates a relationship between the bitrate
and the slope of the R-D curve. This model was adopted in
HEVC [24] as it has shown higher accuracy in rate control
over the older pixel-wise unified R-Q model [6].

In this work, we utilize and extend the λ-domain model to sup-
port optimizing the quality of game video streams while meeting
the strict latency requirements of cloud gaming.

3 PROPOSED CAVE METHOD
3.1 Overview
We consider a cloud gaming system consisting of server(s) and
clients. Servers are deployed in data centers of public or private
clouds. Servers are instantiated as virtual machines (VMs), where
each instance runs the gaming engine to render and encode the
game actions generated by clients. Specifically, upon receiving a
client’s input, the server processes this input and renders the output
of the game as raw video frames. These frames are then encoded
and streamed to the client. Clients, on the other hand, run simple
functions on end user devices such as tablets, smartphones, and
PCs. In particular, clients capture the players’ actions from the
control devices, e.g., keyboards, touch screens, and game-pads, and
send them to the server. And upon receiving the encoded video
frames from the server, clients decode and display them to the
players. No computation-intensive tasks, e.g., graphics rendering,
are performed on clients’ devices. The high-level architecture of
cloud gaming is shown in Figure 1.

The proposed content-aware video encoding method, CAVE, is
to be integrated with cloud gaming servers to optimize the qual-
ity of video streams delivered to gaming clients and reduce the
bandwidth consumption of such streams. Achieving these goals
is quite challenging in cloud gaming, because of the following re-
quirements:

GameUProcess

CAVE
UGameU
Frames

VideoUEncoder

WeightUAssignment

UURate
Control

UUEncoding
Parameters

CloudUGameUServerU(VM)

Internet

Encoded
UFrames

UserUInputs

VideoUDecoder

C
om

m
an

ds

GameUClient

Rendered
UUFrames

ROIU
Info

UGPU
Buffer

Figure 1: High-level architecture of cloud gaming platforms
incorporating CAVE.

• Low Latency. Cloud video games are highly interactive appli-
cations, where timing of events is critical. This requirement
not only restricts the time allowed for the server to render
and encode video frames, but also restricts the time needed
to transmit such frames. In other words, the resulting bitrate
should not vary significantly, which puts additional con-
straints on the rate control model used to allocate bits to
frames.

• Scalability. Cloud gaming servers are designed to serve thou-
sands of users concurrently, where video streams could be
customized for individual users. Thus, the additional re-
sources (memory and CPU) needed by any optimization
of the video streams should be minimal. For example, com-
plex image analysis tasks cannot be performed on frames in
real time.

• Modular Design of Cloud Gaming Platforms. These platforms
are complex systems with many software and hardware com-
ponents. In real deployments, these components come from
different sources and are integrated through various inter-
faces and APIs. That is, in many cases the cloud gaming
service provider may not have access to the source code
of individual components. For example, the video encoder,
whether it is implemented in software or hardware, is typ-
ically sourced from a third-party company as a black-box
with various APIs to configure and run it. This means that for
any encoding optimization method to be practically viable, it
needs to interact with the encoder through its exposed APIs
and should not assume direct access to the encoder source
code.

We design CAVE to satisfy the above practical requirements. At a
high level, CAVE is implemented as a software component between
the Game Process and Video Encoder in Figure 1. It does not require
changing the encoder, nor does it impose high processing overhead
on the server. It controls the encoding bitrate while running in real
time to meet the low-latency requirements. In addition, CAVE does
not maintain or use state to encode successive video frames. This is
a desirable feature especially for cloud platforms, in which servers
run on VMs that can and do fail. In case of a VM failure, CAVE does
not require any state to be transferred to the new VM instance.

The cloud gaming engine performs various operations to produce
video frames to be sent to the client. It reads the inputs from the

62

MMSys ’19, June 18–21, 2019, Amherst, MA, USA M. Hegazy et al.

client and feeds them to a running process of the game. The cloud
gaming engine captures the game frames from the GPU frame
buffer. CAVE uses information about the game’s ROIs and computes
various encoding parameters to optimize the quality. It then passes
these parameters to the Video Encoder, which produces the encoded
frames sent the client.

CAVE optimizes the quality by allocating different amounts of
bits to various areas (blocks) in each video frame, based on the
importance of these blocks to players. Assigning importance to
blocks is not easy, especially in video games where frames typically
contain rich and complex graphics covering most of the blocks.
This complexity makes using saliency-based approaches, e.g., [2],
to estimate the importance of various blocks inaccurate, because
they rely on visual cues such as color and intensity, which do not
necessarily correlate with the player’s attention and interaction
with the game [32]. In Section 3.2, we present our proposed ap-
proach for assigning weights to different blocks, which considers
the characteristics of video games and how players interact with
them.

CAVE, then, allocates bits to blocks based on their weights. This
is a crucial step as the bitrate needs to be carefully controlled to
meet the low-latency requirement of cloud gaming, while achieving
high and consistent quality of the encoded video frames, given a tar-
get bitrate set by the cloud gaming service provider. In Section 3.4,
we present our approach for controlling the bitrate, which is de-
signed for the state-of-the-art HEVC video encoder and extends its
basic λ−domain rate control algorithm to meet the requirements of
content-aware cloud gaming.

3.2 Weight Assignment
Prior works, e.g., [2], considered a bottom-up approach in assign-
ing weights to blocks. A bottom-up approach relies on the saliency
and low-level features, e.g., color, texture complexity, and spatial
frequency, of different areas to estimate their importance. As men-
tioned above, these visual cues do not capture the importance of var-
ious objects to players. For example, in a first-person shooter game,
the target/enemy is the most important object for the player even
if its texture/color is not complex, whereas static and background
objects are less important even if they have complex graphics. In ad-
dition, generating saliency maps and analyzing visual cues require
extensive image processing operations and may not be suitable for
latency-restricted cloud gaming.

In contrast, we propose a top-down approach to assign weights
to different blocks, which considers the attention of players. That
is, our approach assigns higher weights to the most relevant blocks
to tasks being accomplished by players. Our approach is inspired
by previous studies [13] that show in active search tasks, top-down
cues are the most relevant from the user’s attention perspective.
Identifying relevant blocks is straightforward for game developers,
because they know the logic and semantics of the game. Thus, they
can expose this information as metadata with the game that can be
accessed via APIs. CAVE assumes that the game developer exposes
simple information about different objects in each frame. Using this
information, one or more regions of interest (ROIs) are defined as
bounding boxes containing objects of importance to the task being
achieved by the player. For example, in a first-person shooter game,

ROIs can include objects such as the enemy characters, health bar
and world map of the game. We note that ROIs depend on the
semantics of the game and the situation of players at different time
instances. In the next section, we proved an example illustrating
how the ROI information can be exported.

After defining ROIs, CAVE calculates different weights for blocks
inside and outside of ROIs based on a foveated imaging and retinal
eccentricity model. Specifically, the intuition behind using foveated
imaging is that the spatial resolution of the eye is at its peak at
the center of gaze. As we move further away from the center of
gaze, the resolution of information delivered by the eye decreases
logarithmically. The angle between any perceivable detail and the
visual axis of the eye is referred to as the retinal eccentricity angle,
which we denote by θ . The fovea is only capable of covering a small
visual angle of 2°[23]. An early work [40] developed a model to
approximate the sensitivity of the human visual system (HVS) to
different areas in an image. This model is, however, fairly complex
as it depends on the spatial frequency as well the eccentricity angle.
Computing spatial frequency requires applying various filters to
the image and is costly as it needs to process every pixel in a frame
which affects the end-to-end latency. And as we discussed before,
the spatial frequency may not necessarily reflect the importance
of various objects to players. We simplify the model in [40] by
considering only the retinal eccentricity angle θ . The sensitivity of
the HVS in CAVE is approximated as:

etan
−1(θ) = etan

−1(−dD) ≈ e
−d
D , (1)

where d is the Euclidean distance between a pixel in the frame and
the center of gaze, and D is the diagonal of the frame to eliminate
any dependency on the frame resolution. Notice that the value of
d/D is between 0 and 1 and the tan−1 function on that range can
be approximated by the identity function.

CAVE assumes that the center of the bounding box encompassing
an ROI is the center of gaze. Based on this assumption, CAVE will
assign more bits to an ROI to enhance its quality since an ROI is the
most likely area that will attract the user’s attention. However, there
may be multiple ROIs in a single frame [30], and these ROIs might
have different types which implies that they should be assigned
different importance factors relative to each other. Therefore, we
extend Eq. (1) to support the potential presence of multiple ROIs,
as follows:

1
M

M∑
i=1

e(−Kdi)/(FiD), (2)

whereM is the number of ROIs in the frame, K is a constant scaling
factor controlling the desired discrepancy in bit allocation and
quality between ROI and non-ROI areas,di is the Euclidean distance
between a pixel in the frame and the center of the ith ROI and Fi
is the importance factor of the ith ROI which is in the range of
0 < Fi ≤ 1. The importance factors Fi can be defined by the game
developers based on prior knowledge of the current task or mission
in the game and the importance of each ROI in achieving that task.
The scaling factor K is a tunable parameter; in our experiments it
ranges from 2 to 10.

We calculate the weight of each N × N block not belonging to
an ROI using the sensitivity value in Eq. (2) between its center,
i.e., at position (N /2,N /2) relative to its top left corner, and the

63

Content-aware Video Encoding for Cloud Gaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

center of each bounding box encompassing an ROI. For a block
belonging to an ROI we assign to it a weight proportional to the
scaling factor K and its relative importance Fi to maintain the same
quality for the blocks inside the ROI. Based on our experiments
the sensitivity values of individual pixels inside a single block do
not have a large variance and thus the sensitivity value of the pixel
in the center of a block is considered as a suitable representative
of the sensitivity value for the whole block in CAVE. We follow
this approach to avoid processing every pixel in the frame and to
reduce the overhead of the weights’ calculation.

In summary, the weightw of a block whose center position is at
(x ,y) denoted by b[x ,y] is determined as:

w[x ,y] =
{
e−1/(KFi) if b[x ,y] ∈ ROIi
1
M

∑M
i=1 e

(−Kdi)/(FiD) if b[x ,y] < ROIi
,∀i (3)

3.3 Exporting ROI Information
The ROI information is essential for any content-aware encoding
method. One way to obtain ROI information is to use some deep
learning tools, e.g., [34], to estimate it, after the game is deployed
and used by many players. Although this is possible for popular
games with thousands of users from which large datasets can be
collected, the time cost can be very high and may not be suitable
for real-time cloud gaming.

Another way to obtain ROI information is to export such in-
formation during game development. This is not difficult as game
developers already expose various other information like error logs
to debug game crashes. For example, the ROI information can be
stored in the Stencil buffer so that it can be intercepted during the
rendering process. The Stencil buffer contains information that can
be used for post-processing the rendered pixels in a frame. It is
considered as an auxiliary buffer in addition to the essential ones
such as the frame (color) and depth buffers. It is used in [30] to
hold the importance of every pixel. Processing every pixel in the
Stencil buffer to get the ROI information is, however, expensive. We
propose a more efficient approach, in which the game developer
assigns simple tags to game objects and these tags are used later in
run time to extract the ROI information in order to optimize the
video coding. The tags can be accessed via an API that the game
developer exposes.

To illustrate our approach, we have developed a simple game,
based on [21], using the popular Unity game engine. The game
consists of a controllable player character that can move around
in a bounded arena and collects items from the floor to increase
their score. The game is shown in Figure 2 where the player is
represented as a black sphere and the collectable items are shown
as white cubes. To support CAVE, the game developer would need
to create a few tags representing the priority of different objects in
the game. For this simple example, two tags are sufficient: player
and item. Player has higher priority; therefore, it has a different
tag than the item object. Then, the game developer would attach
tags to the various objects in different frames. In addition, a simple
API to export the objects’ coordinates given their tags would be

Figure 2: An example of simple game in Unity to illustrate
how the ROI information can be exported. The tags above
the objects are printed directly by the Unity game engine
given the knowledge of the assigned tag to each object.

needed. In the Unity framework1, this API can have the following
signature: List<Rect> getBoundingBoxes(string tag);.

This API can be implemented by the game developer as follows.
The player character in this game is given the tag "Player". Calling
the following function in Unity: FindGameObjectWithTag("Playe
r") returns a Unity GameObjectwhich is the parent of any object in
a Unity game. GameObjects in Unity, such as the player object, hold
as one of their properties the coordinates and bounds in 3D space
of that object. By projecting the coordinates of the GameObject
from 3D space onto the screen’s 2D space, the game developer can
easily retrieve the bounding box around the object in the screen’s
2D space by getting the two farthest points that were projected in
the 2D space. This projection is easy as the game developer already
has the needed transformation matrices to perform this operation.
The game developer can then return a list of bounding boxes (Rect
objects in C#) around the objects of the corresponding tag when
the above API is called by CAVE.

Assuming that the game is instrumented during the development
using the simple tags and the availability of the API described above,
CAVE can perform its optimization as follows. Given that CAVE has
the names of the different tags in the game and their corresponding
importance factors (Fi in Eq. (3)), it can then retrieve the bounding
boxes and assign weights to various objects in the frame using Eq.
(3).

3.4 Rate Control
Cloud gaming service providers strive to achieve good quality of
the delivered video streams to players, while minimizing the de-
livery cost. Thus, they specify an encoding bitrate that achieves
a desired target video quality. The rate control component of the
encoder allocates bits to blocks and frames within the bit budget
of the specified encoding bitrate. The allocation of bits to meet the
average encoding bitrate can be done on three levels: GOP (Group

1Using the C# version.

64

MMSys ’19, June 18–21, 2019, Amherst, MA, USA M. Hegazy et al.

of Pictures), frame, and block levels. Content-awareness adds an-
other complexity to the rate control process, as bits are supposed
to be allocated to also reflect the importance of blocks, while still
meeting the target bitrate and not introducing significant spatial
and temporal variations.

As discussed in Section 2, multiple rate control models have
been proposed in the literature. We focus on the most recent λ-
domain model and extend it to support content-aware encoding for
cloud gaming. In the following, we start by presenting the basics
of λ-domain model. Then, we describe our extensions to it.

Basic λ-domain Model. The relationship between the bitrate
and the λ value of the R-D curve is modeled as [25]:

λ = αbβ , (4)
where b denotes the number of bits per pixel, and α and β are the
model parameters. b represents the target bitrate R independent of
the resolution and frame rate, and is calculated as b = R/(f ×w×h),
where f is the frame rate,w and h are the width and height of the
frame or the block respectively. α and β are updated after encoding
a single frame or single block, depending on the granularity of the
rate control, according to the following equations:

λa = αoldb
βold
a (5)

αnew = αold + δα × (ln λt − ln λa) × αold (6)
βnew = βold + δβ × (ln λt − ln λa) × lnba , (7)

where λa is the computed λ value using the actual generated num-
ber of bitsba after encoding, λt is the target λ value before encoding
using the target number of bits, and δα and δβ are constants.

For bit allocation at the GOP level, the number of bits allocated
to a GOP is adjusted based on the actual number of bits used in
the previous GOP to account for the fact that some GOPs may use
more/less bits than were allocated to them. The number of bits
allocated to the ith GOP after encoding j − 1 frames in the GOP is
updated as follows:

TGOPi (j) =



R
f ×(Nc+Sw)−Rc

Sw × NGOP , if j = 1
TGOPi (j − 1) − Ri (j − 1), if j = 2, . . . ,NGOP

(8)

where Nc is the total number of encoded frames, Sw is a constant
which is used to smooth out the quality and rate changes between
GOPs (set to 120 in CAVE)2, Rc is the actual number of bits gen-
erated by the Nc frames, NGOP is the number of frames in a GOP
and Ri (j − 1) is the number of bits generated by the (j − 1)th frame
in the ith GOP.

After the GOP bit allocation, the number of bits at the frame level
is adjusted based on the number of bits used by the previous frames
in the same GOP and the number of remaining bits as follows:

Ti (j) =
TGOPi (j) − RGOPi∑NGOP

k=j wk
×w j , (9)

where j refers to the index of the current frame in the ith GOP,
RGOPi is the number of bits generated by already encoded frames
in the ith GOP, andw j is the weight of a frame that depends on its
level if a hierarchical GOP structure is used.

2As discussed in [25], large values of Sw lead to smoother bitrate and quality
changes.

Finally, the number of bits at the block level is adjusted based
on the number of bits used to encode previous blocks in the same
frame and the number of remaining bits as follows:

Tblock [x ,y] =
Ti (j) − Rh − B∑Nh
l=x

∑Nv
k=y w[l ,k]

×w[x ,y], (10)

where (x,y) is the position of the current block in the frame, Nh
and Nv are the number of blocks in the horizontal and vertical
directions respectively, B is the number of bits generated by already
encoded blocks in the current frame, Rh is the estimated number
of header bits, andw[x ,y] is the weight of the block that depends
on the Mean Absolute Difference (MAD) between the original and
predicted signal values of the pixels inside the block.

Using the λ value calculated by equation (4), the QP of the frame
or the block can be calculated as:

QP = C1 × ln λ +C2, (11)

where C1 and C2 are constants equal to 4.2005 and 13.7122, respec-
tively [25].

Assigning Unequal QPs. Using equations (9) and (10) we can
calculate the target bits per pixel, b, for a frame or a block, and
from there the λ value can be calculated using equation (4). After
that, through equation (11), the QP values can be calculated on the
frame and block levels.

The granularity of rate control in CAVE is at the frame-level only
in order to reduce the complexity and overhead of CAVE on the
overall performance of the cloud gaming platform. CAVE assigns
bits and QPs to blocks unequally using equation (10) to achieve
our content-aware goals. Therefore, after encoding a whole frame,
we update the α and β values on the frame-level and use them as
estimates while calculating the λ values for the blocks of the next
frame. The weight w[x ,y] of a block in equation (10) is replaced
by the weights calculated by equation (3). Since we perform frame-
level rate control, the Rh and B values in (10) are assumed to be
zeros while allocating bits for individual blocks using our weights
since it is done once only for all blocks before encoding the frame.
Thus in CAVE, we modify equation (10) to become:

Tblock [x ,y] = Ti (j) ×w[x ,y], (12)
wherew[x ,y] is the relative weight of the block at position (x ,y)
to the total weights of all blocks and is calculated as:

w[x ,y] = w[x ,y]∑Nh
i=1

∑Nv
j=1w[i, j]

. (13)

In this way, the summation of w[x ,y] over all blocks is equal to
1 to ensure that the summation of bits assigned to each block,
Tblock [x ,y], does not exceed the target number of bits for the frame
Ti (j). A mean filter is applied on the weights calculated by equation
(13) to avoid blocking artifacts.

As an additional step to avoid overshooting the target number
of bits for a frame, we apply a zero-accumulated ∆QP approach
after assigning unequal QPs to blocks. This is done by calculating
a reference QP for the frame using equation (11) and summing the
difference between the frame’s QP and each of the blocks’ QPs. If
this sum is less than 0, it means that there might be an overshoot
over the target number of bits for the frame as many blocks have a

65

Content-aware Video Encoding for Cloud Gaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

QP lower than the frame’s reference QP. In this case, we raise the
QPs evenly in blocks outside the ROIs to make sure that the average
QP of the blocks is the same as the frame’s reference QP. This is a
heuristic to avoid rate spikes that might occur due to lowering the
QPs of the blocks inside the ROIs.

Minimizing Rate Fluctuations Across Frames. To reduce
rate fluctuations, we use a flat GOP structure containing I and P
frames only with no bi-directional B-frames. This means that the
weights of the frames in equation (9) are all equal to 1 as this setting
is the most suitable for low latency applications.

Since the original λ-domain model did not include a buffer model
and to further reduce the rate fluctuations, we modify the virtual
buffer model [42] and integrate it with the rate control algorithm.
Specifically, equation (8) is modified as follows:

TGOPi (j) =
{
(Rf − τ × Vi (j)

f) × NGOP , if j = 1
TGOPi (j − 1) − Ri (j − 1), if j = 2, . . . ,NGOP

,

(14)
where Vi (j) is the virtual buffer occupancy after encoding j − 1
frames in the ith GOP, and τ is a constant controlling the conver-
gence speed [42], set to 0.5 in CAVE based on our experiments. The
virtual buffer occupancy Vi (j) is updated as follows:

Vi (j) =


0.5 ×Q, if i = 1; j = 1
Vi−1(NGOP), if j = 1
Vi (j − 1) + Ri (j − 1) − R

f , if j = 2, . . . ,NGOP

, (15)

where Q represents the virtual buffer size which is usually equal to
the size of one frame (R/f) in low-latency applications.

Equation (9) is modified such that the total number of target
bits for the next frame will depend on two factors: the number of
remaining bits in the GOP (T̃) and the number of bits based on the
feedback from the virtual buffer (T̂) which are defined as follows:

T̃i (j) = min(R
f
,
TGOPi (j)
NGOP − j

), (16)

and
T̂i (j) = R

f
+min(0,L −Vi (j)), (17)

where L represents the target buffer level and is equal to 0.5 ×Q .
Therefore the target number of bits for the jth frame in the ith
GOP is calculated as follows:

Ti (j) = η × T̃i (j) + (1 − η) × T̂i (j), (18)
where η is a constant equal to 0.9 for low-latency use cases [42].
Opposed to [42], we ensure in equations (16) and (17) that the target
number of bits for the next frame is always upper bounded by R/f
to avoid rate spikes and latencies.

Summary of all Steps. We perform rate control and allocate
bits to different areas within the game frames and across frames as
follows:

• Given a target number of bits for a frame, we calculate the
target bits of each block using equation (12).

• Using the target bits of the block we calculate the λ and QP
values for a block using equations (4) and (11), respectively.

• After encoding a single frame we update the virtual buffer
occupancy and the number of bits in the GOP through equa-
tions (15) and (14), respectively.

Game Process

 Video
Source

 Video
Encoder

CAVE

 video
capture

 write
frame

 wake
 encoder

 wake
 CAVE

 QP map
 buffer

Number of
bits buffer

Video
buffer

 read
number
 of bits

 write
number
 of bits

 read
QP map

 write
QP map

 encode
 and send

 read
frame

Modules

Shared Buffers

Network

Figure 3: Implementation of CAVE as a GamingAnywhere
server-side module.

• Also, the α and β values are updated using the actual number
of bits generated after encoding the frame using equations
(5), (6), and (7).

• The target number of bits for the next frame is calculated
using equation (18).

4 EXPERIMENTAL EVALUATION
In this section, we describe our implementation of CAVE in Gaming-
Anywhere, an open-source cloud gaming system. We also present
our experimental setup and show the performance gains achieved
by CAVE as well as analyze the overhead imposed by it.

4.1 Implementation in GamingAnywhere
GamingAnywhere is an open-source system designed to enable
researchers to evaluate their ideas in a realistic cloud gaming plat-
form. The server side of the system is composed of 6 modules to
handle the communications with the client as well as encoding the
audio/video content of the game. The client consists of two modules
to decode the audio/video from the server and capture the player’s
actions and send them to the server.

CAVE is implemented as an additional module at the server side
of GamingAnywhere; CAVE does not require any changes to the
client side. We illustrate the interaction between CAVE and the
various modules of the GamingAnywhere server in Figure 3, which
is mainly done through buffers. Notice that we do not show all
modules of the server, only the ones that CAVE interacts with.
Notice also that GamingAnywhere did not have support for the
recent HEVC encoder; we added this support by integrating the
open-source x265 HEVC encoder [20] into GamingAnywhere.

As shown in Figure 3, the Video Source module is responsible for
starting the Video Encoder and CAVE modules. The Video Encoder
module interacts with the Video Source module through the Video

66

MMSys ’19, June 18–21, 2019, Amherst, MA, USA M. Hegazy et al.

Abbreviation Resolution Perspective Motion Brightness ROI: Importance Factor (F)

Game1 1280x720 3rd Person High High
Player’s avatar:1

Textual information:0.9
Map:0.9

Game2 640x480 1st Person Low Medium Middle of screen:1

Game3 800x600 1st Person Medium High Middle of screen:1
Textual information:1

Game4 640x480 1st Person High Medium Character’s face:1
Table 1: Characteristics of the gaming video segments used in our experiments.

Buffer to encode raw frames after converting them from the RGB
color space to the YUV color space, which is the format required
by the encoder. After encoding a frame by the encoder, the actual
number of bits returned by the encoder’s API is written into the
Number of bits buffer so that it can be read by the rate control
component of CAVE to update the remaining number of bits in the
GOP and the virtual buffer occupancy. This buffer is created by
using the existing GamingAnywhere APIs that allow the creation of
buffers to communicate information among modules as needed and
is created and managed by the Video Encoder module. Similarly, the
rate control component in CAVE communicates QPs of the blocks
to the encoder through the QP map buffer, such that the QPs are
applied while encoding the next frame. This buffer is created and
managed by CAVE.

In order to send QPs to the x265 encoder, we operate it under the
constant QP mode (CQP) by giving it an arbitrary QP (e.g., 22) and
enabling the adaptive quantizationmode. The adaptive quantization
mode allows sending a map of QP offsets for blocks in the frame.
These offsets are added on top of the decisions taken by the encoder.
Since we have set the operation mode of the encoder to CQP, the
encoder’s decision is to apply the same QP (i.e., 22) to all blocks in
the frame. We leverage this mode to achieve our content-aware rate
control purposes by sending offsets from the constant QP that are
calculated by CAVE. The x265 encoder’s interface is extended in
order to enable the adaptive quantization mode with the CQP mode.
It is important to notice that CAVE does not require modifying the
source code of the video encoder; it only uses the exposed encoder’s
APIs to optimize the video encoding process based on the game
content.

We use the following configurations of the x265 encoder, which
are recommended to achieve low latency for cloud gaming [17]:
--preset ultrafast --tune zerolatency --ref 1 --me dia
--intra-refresh --merange 16 --bframes 0

4.2 Experimental Setup
We conduct multiple experiments with different video games in
various scenarios. We assess the performance in terms of several
practical metrics and compare our method against the baseline
HEVC encoder and the closest work in the literature.

Video Games:We select segments of four diverse games to test
the performance of CAVE; we refer 3 to them as Game1, Game2,

3Although the games we used in the experiments are open source, we could
not reveal their names due to legal restrictions and precautions of our industrial
collaborators.

Game3, and Game4. Each video segment is 20 seconds long and
contains 600 frames. Game1 is a popular vehicular combat game
with a large user base on different platforms. Game2, Game3, and
Game4 are commonly-available samples with game development
tools, which are representative of real games in terms of complex-
ity, motion and lighting. They also contain all necessary elements
of real games in terms of rendering graphical components. The
three samples were chosen with different characteristics in terms
of motion and brightness. They have different ROIs as well. Table 1
summarizes the characteristics of the four gaming segments used
in our experiments.

Methods Compared Against: We compare CAVE against the
following:

• Base: this is a baseline HEVC encoder with the recent λ-
domain rate control model, which assigns the same QP to
all blocks.

• RQ [38]: this is the closest work in the literature that aims at
achieving content-aware rate control in cloud gaming. The
content-aware method in [38] also uses ROIs. The authors
of this model stated that it can be extended to support the
HEVC encoder by using the pixel-wise unified RQ model
for rate control. We implemented this method as in the last
version of the HEVC Test Model (HM-8.0), which contains
the RQ model.

We did not include other works, e.g., [30], in our comparison as
they were designed for H.264/AVC and did not claim portability or
support for HEVC.

Performance Metrics: We consider the following metrics:

• Structural Similarity Index (SSIM) [41]: This metric measures
the quality of a distorted frame relative to a reference frame
by using perceptual models that simulate the Human Visual
System. We measure SSIM for the ROIs and the whole frame.

• Video Multimethod Assessment Fusion (VMAF) [27]: This met-
ric, developed and used by Netflix, is based on a machine
learning model (SVM) to predict the subjective score of a
distorted video. It also captures the temporal degradation
among frames, since one of the features used in training the
SVM model is a temporal quality metric.

• BD-rate [3]: This metric computes the average bitrate savings
between two competing methods by calculating the average
area between their Rate-Distortion (R-D) curves. Negative
values denote bitrate savings achieved by the first method
compared to the second one.

67

Content-aware Video Encoding for Cloud Gaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

• Quality Fluctuations: This metric measures the variation of
quality between frames and is calculated as the standard
deviation of the SSIM values of the frames. Lower values of
this metric are better and indicate that the encoded segment
has consistent quality.

• Rate Control Accuracy: This metric measures the mismatch
between the target and actual bitrates. It shows the accuracy
of the rate control in various methods. It is calculated as the
absolute difference between the target and actual bitrates
divided by the target bitrate.

• CPU Time: This metric measures the time (in milliseconds)
needed to perform the required steps in CAVE and is used
to compute the overhead of CAVE, which is important for
meeting the low-latency requirements of cloud gaming.

Experiments: We set up the GamingAnywhere system on a
Windows 10 desktop equipped with 2.40 GHz processors and 12 GB
of memory. We conducted end-to-end experiments to ensure the
whole system (server and client) works, and to assess the processing
overheads of our method. To analyze the quality of multiple video
segments under different bitrates and many encoding options, we
encode the video segments offline using our method, after collecting
the raw frames from GamingAnywhere. Specifically, we instrument
the code of the filter-rgb2yuv module to save the raw frames
into a file after their conversion to the YUV color space. The code
responsible for offline encoding loads the raw frames from the saved
file and sends them to the x265 encoder along with the QPs that we
calculate in CAVE. We define the ROIs manually in order to show
the quality gains that can be achieved if the ROI information were
to be exported from the game. To minimize the manual assignment
of ROIs, we define ROIs for every other frame as the content does
not change significantly between two frames.

Since each video segment has different characteristics of mo-
tion and resolution, we determine the target bitrates suitable for
each segment by encoding it under 4 different QPs (22, 27, 32, 37)
and using the resulting bitrates as targets for CAVE. We use the
HM reference decoder (HM-16.18) to decode the bitstreams gener-
ated by the x265 encoder so that we can evaluate its quality using
SSIM/VMAF in MATLAB.

In CAVE, K in equation (3) is determined by varying its value
such that the overall quality is not degraded compared to the base-
line for the lowest bitrate. The optimal K value of the lowest bitrate
is increased by a step of one as we go from one bitrate to the next
one. The intuition behind this approach is that we can allow a
higher discrepancy in bit allocation between blocks in ROIs and
blocks in non-ROIs if we have a larger number of bits to assign. A
summary of the target bitrates for each segment and the value of
K for the lowest bitrate, Kmin , are shown in Table 2.

4.3 Results
To make the presentation clearer and due to space limitations, we
only present a representative sample of our figures and results in
the following.

Quality Gains and Bandwidth Savings.We start by showing
the quality improvements in the ROIs that can be achieved by CAVE
in comparison to Base and RQ. In Figure 4, we plot the SSIM in the
ROIs achieved by CAVE, Base, and RQ for Game1 under different

Segment/QP 22 27 32 37 Kmin
Game1 7760.37 4232.44 1911.93 716.38 7
Game2 421.96 224.17 124.51 75.82 4
Game3 7430.28 3923.28 1923.74 923.47 2
Game4 4969.67 2796.85 1388.36 627.11 2

Table 2: QPs and resulting bitrates in kbps of game segments
used in the experiments. The rightmost column showsKmin ;
the K value of the lowest bitrate.

Segment/Comparison CAVE– Base CAVE– RQ
Game1 -46% -33%
Game2 -25% -12%
Game3 -22% -68%
Game4 -21% -89%

Table 3: Potential bitrate savings by CAVE; computed using
the BD-Rate metric on the SSIM R-D curves of ROIs.

bitrates. The figure shows that CAVE consistently outperforms Base
and RQ for all bitrates. The quality gains in ROIs can be translated
to bitrate savings. For example, for a target SSIM quality level of
0.90, CAVE uses around 1 Mbps while the Base and RQ methods
require around 2 Mbps to achieve the same quality in the most
important areas in the frames. This is equivalent to a bitrate saving
of≈50%. Similar results were obtained for the other games as shown
in Figure 5.

We next quantify the bitrate savings achieved by CAVE using the
BD-rate metric. Table 3 lists the potential savings for each game’s
segment, when the BD-rate metric is computed on the ROI SSIM
curves. The table shows that CAVE can achieve bitrate savings
from 20% to up to 45% compared to Base, and from 12% to up to
88% compared to RQ. These are substantial savings especially for
high-quality games with thousands of users playing for extended
periods of time.

In terms of overall quality measured by SSIM, Figure 6 shows
that CAVE is able to maintain the overall quality at a level very
close to the baseline encoder. This means that our weights and the
unequal QP assignment to blocks do not introduce instabilities to
the encoding process and the overall quality. Since the SSIM metric
does not capture temporal degradations, we refer to the results of
VMAF in Figure 7. The results of the VMAF metric confirm that
CAVE does not introduce temporal artifacts between successive
frames.

While the quality in ROIs is perceived by players the most, it
is still important to maintain a good quality in the other non-ROI
areas. We show in Figure 6 and Figure 7 that overall quality (in
terms of SSIM and VMAF) across all areas did not drop because of
the unequal bit allocation of CAVE.

Quality Fluctuations and Rate Control Accuracy. The qual-
ity fluctuations metric, measured as the standard deviation of the
SSIM value of the frames, is plotted in Figure 8 for CAVE, Base, and
RQ for three different video games. The figure shows that CAVE
maintains consistent quality and does not introduce any additional
fluctuations because of the unequal bit allocation.

68

MMSys ’19, June 18–21, 2019, Amherst, MA, USA M. Hegazy et al.

0 1 2 3 4 5 6 7 8

0.75

0.80

0.85

0.90

0.95

1.00

Figure 4: Performance of CAVE against Base and RQ in
terms of the SSIM in ROIs, for Game1.

The rate control accuracy of CAVE is assessed by calculating
the average of absolute differences between the actual and target
bitrates using all the actual bitrates for each segment. The results
are summarized in Table 4. The results show that CAVE is accurate
in staying within the target bitrate. It achieves a low error between
the actual and target bitrates of up to 0.7%.

Segment/Method CAVE Base RQ
Game1 0.62% 0.43% 0.50%
Game2 0.01% 0.40% 1.97%
Game3 0.70% 0.81% 1.91%
Game4 0.29% 0.36% 2.24%

Table 4: Accuracy of the rate control of CAVE, Base, and RQ,
in terms of the error percentage between the target and ac-
tual bitrates.

Overhead Imposed byCAVE. Finally, we analyze the overhead
imposed by CAVE. We run a live session using one of the graphics
samples, Game3, to study the impact of CAVE on the overall per-
formance of GamingAnywhere. The gaming client is connected to
the gaming server over a local area network to isolate the effect of
network queuing and delays and analyze only the impact of CAVE.
The ROIs in this experiment are pre-defined and loaded by CAVE
during its initialization in GamingAnywhere. CAVE computes the
block weights every other frame. The existing transport protocol
in GamingAnywhere (RTP over UDP) is used in this experiment.
We note that since CAVE provides accurate rate control, it will not
have any significant impact on the packet transmission rate in the
cloud gaming system.

We measure the CPU time consumed by the two components
of CAVE. First, we measure the CPU time needed to calculate the
weights. Then we measure the CPU time needed to perform rate
control. We run the gaming session until 4500 frames are encoded,
and compute the average time consumed by CAVE over 900-frame
periods. Table 5 lists the time used by each component of CAVE

in milliseconds. In this table, we also compute the percentage of
the total overhead relative to a typical allowed latency for most
games, which is 100 milliseconds [10]. As shown in the table, CAVE
can easily run in real-time, as it adds an overhead of only 1.21% on
average to the total latency time.

We note that the times in Table 5 were measured without any
parallelization of CAVE’s code; parallelization is usually done for
video codecs. Since there is no dependency between the weights
of individual blocks, the weight calculation in CAVE can be paral-
lelized. The same concept also applies to the rate control algorithm.
Furthermore, the processing overhead of CAVE can be reduced
if we implemented its components inside the code of the video
encoder itself. However, to preserve the modularity of the cloud
gaming system, CAVE is implemented as a separate module that
communicates with the encoder as a black-box through its APIs.

Period Weights(ms) Rate Control(ms) Overhead(%)
1 0.33 1.87 2.20
2 0.54 0.59 1.13
3 0.44 0.71 1.15
4 0.20 0.43 0.59
5 0.42 0.57 0.99

Average 0.39 0.83 1.21
Table 5: Processing overhead of the two components of
CAVE, weight calculation and rate control, and the total
overhead as a percentage of a typical latency of 100 ms. Re-
sults are for Game3.

Summary of the results. The results in this section show that:
• CAVE achieves consistent quality gains in ROIs compared
to other methods.

• CAVEmaintains the overall quality at a level that is no worse
than the baseline encoder which does not perform content-
aware encoding.

• CAVE does not introduce significant quality fluctuations
despite its unequal allocation of bits and QPs to blocks within
each frame.

• CAVE is an accurate rate control method that meets the
target bitrate while achieving content-aware quality gains.

• CAVE is parallelizable, runs in real-time, and does not impose
significant processing overhead on the cloud gaming system.

5 CONCLUSIONS
Cloud gaming platforms are getting popular because they allow
clients with diverse devices to participate in the game without
requiring special hardware. Encoding and transmitting the game
actions as video streams to clients is expensive, especially for high-
quality games with complex graphics. We designed and imple-
mented a new method to efficiently encode video streams for cloud
gaming platforms. The proposed method, referred to as CAVE,
strives to improve the quality of content delivered to clients, given
a target bitrate budget. It does so by allocating the bit budget to
different areas in the video frames such that the quality in the most
important areas (i.e., regions of interest) is maximized, leading to an

69

Content-aware Video Encoding for Cloud Gaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

0 100 200 300 400

0.75

0.80

0.85

0.90

0.95

1.00

(a) Game2

0 1 2 3 4 5 6 7 8

0.75

0.80

0.85

0.90

0.95

1.00

(b) Game3

0 1 2 3 4 5

0.6

0.7

0.8

0.9

1.0

(c) Game4

Figure 5: Performance of CAVE against Base and RQ in terms of the SSIM in ROIs, for three different games.

0 1 2 3 4 5 6 7 8

0.75

0.80

0.85

0.90

0.95

1.00

(a) Game1

0 1 2 3 4 5 6 7 8

0.75

0.80

0.85

0.90

0.95

1.00

(b) Game3

0 1 2 3 4 5

0.75

0.80

0.85

0.90

0.95

1.00

(c) Game4

Figure 6: Performance of CAVE against Base and RQ in terms of the SSIM in all areas, for three different games.

0 1 2 3 4 5 6 7 8

40

60

80

100

(a) Game1

0 1 2 3 4 5 6 7 8

40

60

80

100

(b) Game3

0 1 2 3 4 5

40

60

80

100

(c) Game4

Figure 7: Performance of CAVE against Base and RQ in terms of VMAF, for three different games.

overall improvement of perceptual quality. We have implemented
CAVE in GamingAnywhere, which is an open-source cloud gaming
platform. We conducted extensive experiments with multiple real
video games and measured several performance metrics, including
SSIM, VMAF, quality fluctuations, and bitrate savings. Our experi-
ments show that CAVE consistently outperforms the closest work
in the literature.

ACKNOWLEDGMENTS
This work is supported in part by the Natural Sciences and Engi-
neering Research Council (NSERC) of Canada.

REFERENCES
[1] Advanced Micro Devices, Inc. 2018. How to Capture Your Gameplay Using

Radeon ReLive. Retrieved November 05, 2018 from https://support.amd.com/en-
us/kb-articles/Pages/DH-023.aspx#Streaming

[2] Hamed Ahmadi, Saman Zad Tootaghaj, Mahmoud Reza Hashemi, and Shervin
Shirmohammadi. 2014. A game attention model for efficient bit rate allocation
in cloud gaming. Multimedia Systems 20, 5 (2014), 485–501.

[3] Gisle Bjontegaard. 2001. Calculation of average PSNR differences between RD-
curves. Video Coding Experts Group-M33 (2001).

[4] Business Wire, Inc. 2018. Cloud Gaming Market Analysis By Platform, Ser-
vice Type & Geography, With Forecasts to 2023. Retrieved October
08, 2018 from https://www.businesswire.com/news/home/20180424005697/en/
Cloud-Gaming-Market-Analysis-Platform-Service-Type

[5] Wei Cai, Ryan Shea, Chun-Ying Huang, Kuan-Ta Chen, Jiangchuan Liu, Vic-
tor C.M. Leung, and Cheng-Hsin Hsu. 2016. A Survey on Cloud Gaming: Future

70

MMSys ’19, June 18–21, 2019, Amherst, MA, USA M. Hegazy et al.

0 1 2 3 4 5 6 7 8

0.00

0.02

0.04

0.06

0.08

(a) Game1

0 1 2 3 4 5 6 7 8

0.00

0.02

0.04

0.06

0.08

(b) Game3

0 1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

(c) Game4

Figure 8: Performance of CAVE against Base and RQ in terms of quality fluctuations, for three different games.

of Computer Games. IEEE Access 4 (2016), 7605–7620.
[6] Hyomin Choi, Junghak Nam, Jonghun Yoo, D. Sim, and Ivan Bajic. 2012. Rate

control based on unified RQ model for HEVC. ITU-T SG16 Contribution, JCTVC-
H0213 (2012), 1–13.

[7] Kareem Choudhry. 2018. Project xCloud: Gaming with you at the center.
Retrieved October 08, 2018 from https://blogs.microsoft.com/blog/2018/10/08/
project-xcloud-gaming-with-you-at-the-center/

[8] Sharon Choy, Bernard Wong, Gwendal Simon, and Catherine Rosenberg. 2012.
The brewing storm in cloud gaming: A measurement study on cloud to end-user
latency. In Proc. of the ACM International Workshop on Network and Systems
Support for Games. 2:1–2:6.

[9] Seong-Ping Chuah and Ngai-Man Cheung. 2014. Layered Coding for Mobile
Cloud Gaming. In Proc. of the ACM International Workshop on Massively Multiuser
Virtual Environments. 1–6.

[10] Mark Claypool and Kajal Claypool. 2010. Latency Can Kill: Precision andDeadline
in Online Games. In Proc. of the ACM International Conference on Multimedia
Systems. 215–222.

[11] NVIDIA Corporation. 2018. NVIDIA GeForce. Retrieved October 08, 2018 from
https://www.nvidia.com/en-us/geforce/products/geforce-now/

[12] Valve Corporation. 2018. Extend your Steam gaming experience to your phone,
tablet, or TV over your local network. Retrieved November 05, 2018 from
https://store.steampowered.com/steamlink/about

[13] John M. Henderson, James R. Brockmole, Monica S. Castelhano, and Michael
Mack. 2007. Chapter 25 - Visual saliency does not account for eye movements
during visual search in real-world scenes. In Eye Movements. Elsevier, 537 – III.

[14] Hua-Jun Hong, De-Yu Chen, Chun-Ying Huang, Kuan-Ta Chen, and Cheng-Hsin
Hsu. 2015. Placing virtual machines to optimize cloud gaming experience. IEEE
Transactions on Cloud Computing 3, 1 (2015), 42–53.

[15] Hua-Jun Hong, Chih-Fan Hsu, Tsung-Han Tsai, Chun-Ying Huang, Kuan-Ta
Chen, and Cheng-Hsin Hsu. 2015. Enabling Adaptive Cloud Gaming in an Open-
Source Cloud Gaming Platform. IEEE Transactions on Circuits and Systems for
Video Technology 25, 12 (2015), 2078–2091.

[16] Catherine Hsiao. 2018. Pushing the limits of streaming technology. Retrieved
October 08, 2018 from https://blog.google/technology/developers/pushing-limits-
streaming-technology/

[17] Chun-Ying Huang, Cheng-Hsin Hsu, Yu-Chun Chang, and Kuan-Ta Chen. 2013.
GamingAnywhere: An Open Cloud Gaming System. In Proc. of the ACM Interna-
tional Conference on Multimedia Systems. 36–47.

[18] Chun-Ying Huang, Yu-Ling Huang, Yu-Hsuan Chi, Kuan-Ta Chen, and Cheng-
Hsin Hsu. 2015. To Cloud or Not to Cloud: Measuring the Performance of Mobile
Gaming. In Proc. of the ACM International Workshop on Mobile Gaming. 19–24.

[19] Gazi Illahi, Matti Siekkinen, and Enrico Masala. 2017. Foveated video streaming
for cloud gaming. In Proc. of the IEEE International Workshop on Multimedia Signal
Processing. 1–6.

[20] MulticoreWare Inc. 2018. About x265. Retrieved October 19, 2018 from http:
//x265.org/about/

[21] Instructables. 2017. How toMake a Simple Game in Unity 3D. Retrieved Januaury
19, 2019 from https://www.instructables.com/id/How-to-make-a-simple-game-
in-Unity-3D/

[22] Yihao Ke, Guoqiao Ye, Di Wu, Yipeng Zhou, Edith Ngai, and Han Hu. 2017.
GECKO: Gamer Experience-Centric Bitrate Control Algorithm for Cloud Gaming.
In Proc. of the ACM International Conference on Image and Graphics. 325–335.

[23] Jong-Seok Lee and Touradj Ebrahimi. 2012. Perceptual video compression: A
survey. IEEE Journal of Selected Topics in Signal Processing 6, 6 (2012), 684–697.

[24] Bin Li, Houqiang Li, Li Li, and Jinlei Zhang. 2012. Rate control by R-lambda
model for HEVC. ITU-T SG16 Contribution, JCTVC-K0103 (2012), 1–5.

[25] Bin Li, Houqiang Li, Li Li, and Jinlei Zhang. 2014. λ-Domain Rate Control Algo-
rithm for High Efficiency Video Coding. IEEE Transactions on Image Processing
23, 9 (2014), 3841–3854.

[26] Shengxi Li, Mai Xu, Xin Deng, and Zulin Wang. 2015. Weight-based R-λ rate
control for perceptual HEVC coding on conversational videos. Signal Processing:
Image Communication 38 (2015), 127–140.

[27] Zhi Li, Anne Aaron, Ioannis Katsavounidis, Anush Moorthy, and Megha
Manohara. 2018. Toward A Practical Perceptual Video Quality Metric. Re-
trieved October 18, 2018 from https://medium.com/netflix-techblog/toward-a-
practical-perceptual-video-quality-metric-653f208b9652

[28] Xiaofei Liao, Li Lin, Guang Tan, Hai Jin, Xiaobin Yang, Wei Zhang, Bo Li, Xiaofei
Liao, Li Lin, Guang Tan, Hai Jin, Xiaobin Yang, Wei Zhang, and Bo Li. 2016.
LiveRender: A Cloud Gaming System Based on Compressed Graphics Streaming.
IEEE/ACM Transactions on Networking 24, 4 (2016), 2128–2139.

[29] LiquidSky Software, Inc. 2018. LiquidSky. Retrieved October 08, 2018 from
https://liquidsky.com/

[30] Yao Liu, Sujit Dey, and Yao Lu. 2015. Enhancing video encoding for cloud gaming
using rendering information. IEEE Transactions on Circuits and Systems for Video
Technology 25, 12 (2015), 1960–1974.

[31] Marwa Meddeb, Marco Cagnazzo, and Béatrice Pesquet-Popescu. 2014. Region-
of-interest-based rate control scheme for high-efficiency video coding. APSIPA
Transactions on Signal and Information Processing 3 (2014), e16.

[32] Robert J. Peters and Laurent Itti. 2008. Applying Computational Tools to Predict
Gaze Direction in Interactive Visual Environments. ACM Transactions on Applied
Perception 5, 2, Article 9 (2008), 19 pages.

[33] Ashwin Rao, Arnaud Legout, Yeon-sup Lim, Don Towsley, Chadi Barakat, and
Walid Dabbous. 2011. Network Characteristics of Video Streaming Traffic. In
Proc. of the ACM International Conference on Emerging Networking Experiments
and Technologies. 25:1–25:12.

[34] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2016. You Only
Look Once: Unified, Real-Time Object Detection. In Proc. of the IEEE International
Conference on Computer Vision and Pattern Recognition. 779–788.

[35] Ivan Slivar, Lea Skorin-Kapov, and Mirko Suznjevic. 2016. Cloud Gaming QoE
Models for Deriving Video Encoding Adaptation Strategies. In Proc. of the ACM
International Conference on Multimedia Systems. 18:1–18:12.

[36] Sony Interactive Entertainment LLC. 2016. Playstation Now. Retrieved October
08, 2018 from https://www.playstation.com/en-ca/explore/playstationnow/

[37] Gary J. Sullivan, Jens-Rainer Ohm, Woo-Jin Han, Thomas Wiegand, et al. 2012.
Overview of the High Efficiency Video Coding (HEVC) Standard. IEEE Transac-
tions on Circuits and Systems for Video Technology 22, 12 (2012), 1649–1668.

[38] Kairan Sun and Dapeng Wu. 2015. Video rate control strategies for cloud gaming.
Journal of Visual Communication and Image Representation 30 (2015), 234–241.

[39] ShansheWang, Siwei Ma, ShiqiWang, Debin Zhao, andWen Gao. 2013. Quadratic
ρ-domain based rate control algorithm for HEVC. In Proc. of the IEEE International
Conference on Acoustics, Speech and Signal Processing. 1695–1699.

[40] Zhou Wang and Alan C. Bovik. 2001. Embedded foveation image coding. IEEE
Transactions on Image Processing 10, 10 (2001), 1397–1410.

[41] Zhou Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli. 2004. Image Quality
Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on
Image Processing 13, 4 (2004), 600–612.

[42] Zhongzhu Yang, Li Song, Zhengyi Luo, and Xiangwen Wang. 2014. Low delay
rate control for HEVC. In Proc. of the IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting. 1–5.

71

Content-aware Video Encoding for Cloud Gaming MMSys ’19, June 18–21, 2019, Amherst, MA, USA

A APPENDIX∗

This appendix explains the steps needed to reproduce the results
reported by our proposed method (CAVE). CAVE is a content-aware
rate control method devised for HEVC encoders for use in cloud
gaming. We evaluated CAVE in terms of 2 main aspects: quality and
overhead. The quality evaluation requires having the same video
sequences to be evaluated and compared under different methods.
This is done by implementing CAVE in a stand-alone project to
evaluate those video sequences. The overhead evaluation of CAVE
is done through an implementation in an existing open-source cloud
gaming system (GamingAnywhere). The implementation of CAVE
in GamingAnywhere includes a separate module for our method at
the server-side.

The source code for CAVE and its evaluation can be found at
https://github.com/mohamedhegazy/CAVE.git.

In the following subsections, we explain the structure of our
datasets and source code as well as the steps needed to run and
evaluate CAVE.

A.1 Dataset Structure
This subsection explains the dataset structure for evaluating CAVE
in terms of quality (e.g., SSIM, VMAF, etc.). Each video sequence
to be evaluated in the dataset should be in a separate folder with
the following special structure to run with the provided evaluation
code:

• Folder Name: A video sequence should be placed in a folder
called "ga<sequence number>" (the sequence number con-
catenated to ga).

• Sequence Name: The video sequence file should have the
following name: raw_<width>_<height>.yuv

• Folder Contents: The folder should contain a sub-directory
called QP to hold the encoded versions of the video sequence
under 4 different QPs. In addition, a folder called temp should
be present to hold the evaluation results of the encoded se-
quences. The folder should contain a text file called conf.txt
which contains key-value pairs as follows:
– width=<video width>
– height=<video height>
– fps=<frames per second>

An example of the folder structure for a video sequence should
look as follows:

ga1

QP

temp

raw_1280_720.yuv

conf.txt

A.2 Source Code Structure
This subsection explains the details of the source code and the
required modifications to run on other environments. The following
dependencies are needed to run the source code for the quality and
overhead evaluation:

• Windows 7
∗Subject to the open source code identified, the code in this package was written

solely by the SFU researchers.

• Linux CentOS
• Visual Studio 2017 & Visual Studio 2010 (for GamingAny-
where)

• Matlab
• OpenCL-enabled GPU1

• Python
• Java

The source code directory contains the following folders:
• YUVPlayerROI: contains a Java project responsible for defin-
ing ROIs manually. The YUV conversion is taken from here2.
The program opens a GUI to select a video file with YUV
format and allows specifying ROIs using the format defined
here3. By default, the ROIs are defined for every other frame
in the video. There are multiple ROI types with different
importance factors which can be edited through the source
file YUVPlayer.java.
By default, the ROIs will be written in a file besides the
location of the video sequence (i.e., inside the ga<sequence
number> folder). The ROI files should not be moved outside
of this directory.

• Encoder: contains the source code of the stand-alone project
containing CAVE which is responsible for encoding a raw
video file under different methods (i.e., Base, CAVE, RQ).
The folder contains a Visual Studio 2017 solution. Inside the
debug directory, there exists a python script called encode.p
y which drives the encoding process of the various video
sequences. This script contains variables that should be
changed to evaluate new sequences. These variables are:
– base_path at line 4: This path should be changed to point
at the parent directory containing the folders of the video
sequences (i.e., the folder containing the ga<sequence
number> folders).

– K at line 6: This is a 2D array that contains the K value
at each bitrate for each video sequence. The rows of this
2D array represent the video sequence and the columns
represent the bitrate. For example, at the highest bitrate
for the first video sequence we can have a K value of 7,
therefore the entry (0,0) of this 2D array would be 7.

– length at line 7: This is the length of the video sequence
in seconds. This value should be changed to the length of
the video sequence and assuming that all video sequences
have the same length.

– width at line 11: This is a 1D array holding the width of
each video sequence.

– height at line 12: This is a 1D array holding the height of
each video sequence.

– range at line 14: This is the range of the video sequences
numbers. For example, if the video sequences are as fol-
lows: ga4, ga5, ga6, then the range should be changed
to become (4,7).

The encode.py script calls another python script called
qp.py to encode a sequence under 4 different QPs at line

1OpenCL is needed as the RQ method is implemented on a GPU to make its
evaluation faster.

2https://github.com/luuvish/java-yuv-viewer
3https://github.com/AlexeyAB/darknet#how-to-train-to-detect-your-custom-

objects

72

MMSys ’19, June 18–21, 2019, Amherst, MA, USA M. Hegazy et al.

16. Then the encode.py script calls the Encoder.exe which
takes the following options in order:
– path: This is the path to the video sequence folder (i.e.,
ga<sequence number>).

– bitrate: This is the target number of bits per second.
– method: This is the method to use for encoding which
takes the following values: 0 for CAVE, 2 for RQ, and 4 for
Base.

– sequence number: This is sent as 1 by default.
– K: This is the K value used for CAVE and is valid when the
method to encode with is set to CAVE only and should be
sent as 0 otherwise.

– encoder: This is the index of encoder to use and should
be sent as 0 by default to use the x265 encoder.

• Evaluation: contains theMatlab scripts required to evaluate
the encoded videos. Before running the evaluation, VMAF
should be downloaded and compiled (C++) for Linux as
noted here4. The evaluation code should run on a Linux
machine, by running the run.sh script. This script will de-
code the encoded sequences in their directory and evalu-
ate their VMAF score. Then the script will call the Matlab
script called evaluationsVariations.m to evaluate the se-
quences under different methods. The evaluation scripts
should be placed inside the folder containing the video se-
quences to be evaluated. The following variables should be
changed in runs.sh to evaluate new sequences:
– games at line 2: This is a 1D array containing the name of
the folders of the video sequences (e.g., ga1, ga2, . . .).

– width at line 5: This is a 1D array holding the width of
each video sequence.

– height at line 6: This is a 1D array holding the height of
each video sequence.

The following variables should be changed in evaluationsV
ariations.m to evaluate new sequences:
– width_ at line 19: This is a 1D array holding the width of
each video sequence.

– height_ at line 20: This is a 1D array holding the height
of each video sequence.

– base_path_ at line 26: This is a 1D array containing the
name of the folders of the video sequences (e.g., ga1, ga2,
. . .).

Lines 5, 6, 7 in the Matlab script can be commented out if
multiple cores do not exist on the machine.

• gaminganywhere: this folder contains the implementation of
CAVE in GamingAnywhere. The implementation was done
under Windows 7 and was not tested on other operating sys-
tems. The run time overhead of CAVE will be printed in the
log file maintained by GamingAnywhere. Therefore, when
running a specific game logging should be enabled by speci-
fying a path to the log file. A sample of a configuration file
containing the added configuration needed by CAVE is found
under gaminganywhere/bin.win32/config/server.d3de
x-rc.conf which has 4 new added variables at the end of
the file:

4https://github.com/Netflix/vmaf

– mode: This is the mode to run GamingAnywhere under
which can take a value of 0 for CAVE and 2 for RQ and 3
for Base.

– K: This is the K value used for CAVE and is valid only
when the mode is set to CAVE.

– recording: This is a boolean variable used to store raw
frames in a file. The raw file will be stored with the Game
executable if the mode of GamingAnywhere is event-
driven, otherwise it will be stored with the executable
of the server.

Two common configuration files are placed inside the common
directory for the configuration of the x265 encoder and are
called video-x265-param-rc.conf and video-x265-rc.c
onf. The directory containing the executable of the server
and the directory of the executable of the game should con-
tain a file called roi0.txt to hold default ROI information
for CAVE.

A.3 Steps For Evaluation
This subsection explains the steps needed to evaluate new video
sequences. The steps for quality evaluation of CAVE are as follows
5:

(1) A video sequence should be acquired either through record-
ing using GamingAnywhere 6 or externally. This video se-
quence should be renamed and placed following the dataset
structure convention discussed above.

(2) Using the provided Java program, ROIs should be defined by
opening the video sequence from the Java program.

(3) The provided Visual Studio solution (in Encoder folder)
should be used to encode the recorded video sequence un-
der different methods by calling the driver python script
encode.py.

(4) Using the code provided in the Evaluation folder, the newly
encoded sequences are evaluated using the bash script run.s
h.

The steps needed to evaluate CAVE in terms of overhead are:
(1) The code should be compiled in Windows 7 by following the

steps described by GamingAnywhere developers.
(2) The provided configuration file (server.d3dex-rc.conf)

should be adjusted to enable logging as described in Gamin-
gAnywhere documentation.

(3) In the log file, the average time in terms of milliseconds
needed to run CAVE will be printed at periods of 900 frames.

A.4 Miscellaneous
The source code directory contains a folder called Unity-ROIwhich
contains the example of the game developed in Unity to show
the ability to extract ROIs from a real game engine. The code is
instrumented to take a screenshot of each frame and store it besides
the solution. The requirements to run this code are Unity 5.5 and
Visual Studio 2017.

5The first four steps should be done under Windows 7 OS and the last one under
Linux CentOS.

6Using the periodic server is preferable.

73

